-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy pathedgesTrain.m
300 lines (282 loc) · 13.3 KB
/
edgesTrain.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
function model = edgesTrain( varargin )
% Train structured edge detector.
%
% For an introductory tutorial please see edgesDemo.m.
%
% USAGE
% opts = edgesTrain()
% model = edgesTrain( opts )
%
% INPUTS
% opts - parameters (struct or name/value pairs)
% (1) model parameters:
% .imWidth - [32] width of image patches
% .gtWidth - [16] width of ground truth patches
% (2) tree parameters:
% .nPos - [5e5] number of positive patches per tree
% .nNeg - [5e5] number of negative patches per tree
% .nImgs - [inf] maximum number of images to use for training
% .nTrees - [8] number of trees in forest to train
% .fracFtrs - [1/4] fraction of features to use to train each tree
% .minCount - [1] minimum number of data points to allow split
% .minChild - [8] minimum number of data points allowed at child nodes
% .maxDepth - [64] maximum depth of tree
% .discretize - ['pca'] options include 'pca' and 'kmeans'
% .nSamples - [256] number of samples for clustering structured labels
% .nClasses - [2] number of classes (clusters) for binary splits
% .split - ['gini'] options include 'gini', 'entropy' and 'twoing'
% (3) feature parameters:
% .nOrients - [4] number of orientations per gradient scale
% .grdSmooth - [0] radius for image gradient smoothing (using convTri)
% .chnSmooth - [2] radius for reg channel smoothing (using convTri)
% .simSmooth - [8] radius for sim channel smoothing (using convTri)
% .normRad - [4] gradient normalization radius (see gradientMag)
% .shrink - [2] amount to shrink channels
% .nCells - [5] number of self similarity cells
% .rgbd - [0] 0:RGB, 1:depth, 2:RBG+depth (for NYU data only)
% (4) detection parameters (can be altered after training):
% .stride - [2] stride at which to compute edges
% .multiscale - [0] if true run multiscale edge detector
% .sharpen - [2] sharpening amount (can only decrease after training)
% .nTreesEval - [4] number of trees to evaluate per location
% .nThreads - [4] number of threads for evaluation of trees
% .nms - [0] if true apply non-maximum suppression to edges
% (5) other parameters:
% .seed - [1] seed for random stream (for reproducibility)
% .useParfor - [0] if true train trees in parallel (memory intensive)
% .modelDir - ['models/'] target directory for storing models
% .modelFnm - ['model'] model filename
% .bsdsDir - ['BSR/BSDS500/data/'] location of BSDS dataset
%
% OUTPUTS
% model - trained structured edge detector w the following fields
% .opts - input parameters and constants
% .thrs - [nNodes x nTrees] threshold corresponding to each fid
% .fids - [nNodes x nTrees] feature ids for each node
% .child - [nNodes x nTrees] index of child for each node
% .count - [nNodes x nTrees] number of data points at each node
% .depth - [nNodes x nTrees] depth of each node
% .eBins - data structure for storing all node edge maps
% .eBnds - data structure for storing all node edge maps
%
% EXAMPLE
%
% See also edgesDemo, edgesChns, edgesDetect, forestTrain
%
% Structured Edge Detection Toolbox Version 3.01
% Code written by Piotr Dollar, 2014.
% Licensed under the MSR-LA Full Rights License [see license.txt]
% get default parameters
dfs={'imWidth',32, 'gtWidth',16, 'nPos',5e5, 'nNeg',5e5, 'nImgs',inf, ...
'nTrees',8, 'fracFtrs',1/4, 'minCount',1, 'minChild',8, ...
'maxDepth',64, 'discretize','pca', 'nSamples',256, 'nClasses',2, ...
'split','gini', 'nOrients',4, 'grdSmooth',0, 'chnSmooth',2, ...
'simSmooth',8, 'normRad',4, 'shrink',2, 'nCells',5, 'rgbd',0, ...
'stride',2, 'multiscale',0, 'sharpen',2, 'nTreesEval',4, ...
'nThreads',4, 'nms',0, 'seed',1, 'useParfor',0, 'modelDir','models/', ...
'modelFnm','model', 'bsdsDir','BSR/BSDS500/data/'};
opts = getPrmDflt(varargin,dfs,1);
if(nargin==0), model=opts; return; end
% if forest exists load it and return
cd(fileparts(mfilename('fullpath')));
forestDir = [opts.modelDir '/forest/'];
forestFn = [forestDir opts.modelFnm];
if(exist([forestFn '.mat'], 'file'))
load([forestFn '.mat']); return; end
% compute constants and store in opts
nTrees=opts.nTrees; nCells=opts.nCells; shrink=opts.shrink;
opts.nPos=round(opts.nPos); opts.nNeg=round(opts.nNeg);
opts.nTreesEval=min(opts.nTreesEval,nTrees);
opts.stride=max(opts.stride,shrink);
imWidth=opts.imWidth; gtWidth=opts.gtWidth;
imWidth=round(max(gtWidth,imWidth)/shrink/2)*shrink*2;
opts.imWidth=imWidth; opts.gtWidth=gtWidth;
nChnsGrad=(opts.nOrients+1)*2; nChnsColor=3;
if(opts.rgbd==1), nChnsColor=1; end
if(opts.rgbd==2), nChnsGrad=nChnsGrad*2; nChnsColor=nChnsColor+1; end
nChns = nChnsGrad+nChnsColor; opts.nChns = nChns;
opts.nChnFtrs = imWidth*imWidth*nChns/shrink/shrink;
opts.nSimFtrs = (nCells*nCells)*(nCells*nCells-1)/2*nChns;
opts.nTotFtrs = opts.nChnFtrs + opts.nSimFtrs; disp(opts);
% generate stream for reproducibility of model
stream=RandStream('mrg32k3a','Seed',opts.seed);
% train nTrees random trees (can be trained with parfor if enough memory)
if(opts.useParfor), parfor i=1:nTrees, trainTree(opts,stream,i); end
else for i=1:nTrees, trainTree(opts,stream,i); end; end
% merge trees and save model
model = mergeTrees( opts );
if(~exist(forestDir,'dir')), mkdir(forestDir); end
save([forestFn '.mat'], 'model', '-v7.3');
end
function model = mergeTrees( opts )
% accumulate trees and merge into final model
nTrees=opts.nTrees; gtWidth=opts.gtWidth;
treeFn = [opts.modelDir '/tree/' opts.modelFnm '_tree'];
for i=1:nTrees
t=load([treeFn int2str2(i,3) '.mat'],'tree'); t=t.tree;
if(i==1), trees=t(ones(1,nTrees)); else trees(i)=t; end
end
nNodes=0; for i=1:nTrees, nNodes=max(nNodes,size(trees(i).fids,1)); end
% merge all fields of all trees
model.opts=opts; Z=zeros(nNodes,nTrees,'uint32');
model.thrs=zeros(nNodes,nTrees,'single');
model.fids=Z; model.child=Z; model.count=Z; model.depth=Z;
model.segs=zeros(gtWidth,gtWidth,nNodes,nTrees,'uint8');
for i=1:nTrees, tree=trees(i); nNodes1=size(tree.fids,1);
model.fids(1:nNodes1,i) = tree.fids;
model.thrs(1:nNodes1,i) = tree.thrs;
model.child(1:nNodes1,i) = tree.child;
model.count(1:nNodes1,i) = tree.count;
model.depth(1:nNodes1,i) = tree.depth;
model.segs(:,:,1:nNodes1,i) = tree.hs-1;
end
% remove very small segments (<=5 pixels)
segs=model.segs; nSegs=squeeze(max(max(segs)))+1;
parfor i=1:nTrees*nNodes, m=nSegs(i);
if(m==1), continue; end; S=segs(:,:,i); del=0;
for j=1:m, Sj=(S==j-1); if(nnz(Sj)>5), continue; end
S(Sj)=median(single(S(convTri(single(Sj),1)>0))); del=1; end
if(del), [~,~,S]=unique(S); S=reshape(S-1,gtWidth,gtWidth);
segs(:,:,i)=S; nSegs(i)=max(S(:))+1; end
end
model.segs=segs; model.nSegs=nSegs;
% store compact representations of sparse binary edge patches
nBnds=opts.sharpen+1; eBins=cell(nTrees*nNodes,nBnds);
eBnds=zeros(nNodes*nTrees,nBnds);
parfor i=1:nTrees*nNodes
if(model.child(i) || model.nSegs(i)==1), continue; end %#ok<PFBNS>
E=gradientMag(single(model.segs(:,:,i)))>.01; E0=0;
for j=1:nBnds, eBins{i,j}=uint16(find(E & ~E0)'-1); E0=E;
eBnds(i,j)=length(eBins{i,j}); E=convTri(single(E),1)>.01; end
end
eBins=eBins'; model.eBins=[eBins{:}]';
eBnds=eBnds'; model.eBnds=uint32([0; cumsum(eBnds(:))]);
end
function trainTree( opts, stream, treeInd )
% Train a single tree in forest model.
% location of ground truth
trnImgDir = [opts.bsdsDir '/images/train/'];
trnDepDir = [opts.bsdsDir '/depth/train/'];
trnGtDir = [opts.bsdsDir '/groundTruth/train/'];
imgIds=dir(trnImgDir); imgIds=imgIds([imgIds.bytes]>0);
imgIds={imgIds.name}; ext=imgIds{1}(end-2:end);
nImgs=length(imgIds); for i=1:nImgs, imgIds{i}=imgIds{i}(1:end-4); end
% extract commonly used options
imWidth=opts.imWidth; imRadius=imWidth/2;
gtWidth=opts.gtWidth; gtRadius=gtWidth/2;
nChns=opts.nChns; nTotFtrs=opts.nTotFtrs; rgbd=opts.rgbd;
nPos=opts.nPos; nNeg=opts.nNeg; shrink=opts.shrink;
% finalize setup
treeDir = [opts.modelDir '/tree/'];
treeFn = [treeDir opts.modelFnm '_tree'];
if(exist([treeFn int2str2(treeInd,3) '.mat'],'file'))
fprintf('Reusing tree %d of %d\n',treeInd,opts.nTrees); return; end
fprintf('\n-------------------------------------------\n');
fprintf('Training tree %d of %d\n',treeInd,opts.nTrees); tStart=clock;
% set global stream to stream with given substream (will undo at end)
streamOrig = RandStream.getGlobalStream();
set(stream,'Substream',treeInd);
RandStream.setGlobalStream( stream );
% collect positive and negative patches and compute features
fids=sort(randperm(nTotFtrs,round(nTotFtrs*opts.fracFtrs)));
k = nPos+nNeg; nImgs=min(nImgs,opts.nImgs);
ftrs = zeros(k,length(fids),'single');
labels = zeros(gtWidth,gtWidth,k,'uint8'); k = 0;
tid = ticStatus('Collecting data',30,1);
for i = 1:nImgs
% get image and compute channels
gt=load([trnGtDir imgIds{i} '.mat']); gt=gt.groundTruth;
I=imread([trnImgDir imgIds{i} '.' ext]); siz=size(I);
if(rgbd), D=single(imread([trnDepDir imgIds{i} '.png']))/1e4; end
if(rgbd==1), I=D; elseif(rgbd==2), I=cat(3,single(I)/255,D); end
p=zeros(1,4); p([2 4])=mod(4-mod(siz(1:2),4),4);
if(any(p)), I=imPad(I,p,'symmetric'); end
[chnsReg,chnsSim] = edgesChns(I,opts);
% sample positive and negative locations
nGt=length(gt); xy=[]; k1=0; B=false(siz(1),siz(2));
B(shrink:shrink:end,shrink:shrink:end)=1;
B([1:imRadius end-imRadius:end],:)=0;
B(:,[1:imRadius end-imRadius:end])=0;
for j=1:nGt
M=gt{j}.Boundaries; M(bwdist(M)<gtRadius)=1;
[y,x]=find(M.*B); k2=min(length(y),ceil(nPos/nImgs/nGt));
rp=randperm(length(y),k2); y=y(rp); x=x(rp);
xy=[xy; x y ones(k2,1)*j]; k1=k1+k2; %#ok<AGROW>
[y,x]=find(~M.*B); k2=min(length(y),ceil(nNeg/nImgs/nGt));
rp=randperm(length(y),k2); y=y(rp); x=x(rp);
xy=[xy; x y ones(k2,1)*j]; k1=k1+k2; %#ok<AGROW>
end
if(k1>size(ftrs,1)-k), k1=size(ftrs,1)-k; xy=xy(1:k1,:); end
% crop patches and ground truth labels
psReg=zeros(imWidth/shrink,imWidth/shrink,nChns,k1,'single');
lbls=zeros(gtWidth,gtWidth,k1,'uint8');
psSim=psReg; ri=imRadius/shrink; rg=gtRadius;
for j=1:k1, xy1=xy(j,:); xy2=xy1/shrink;
psReg(:,:,:,j)=chnsReg(xy2(2)-ri+1:xy2(2)+ri,xy2(1)-ri+1:xy2(1)+ri,:);
psSim(:,:,:,j)=chnsSim(xy2(2)-ri+1:xy2(2)+ri,xy2(1)-ri+1:xy2(1)+ri,:);
t=gt{xy1(3)}.Segmentation(xy1(2)-rg+1:xy1(2)+rg,xy1(1)-rg+1:xy1(1)+rg);
if(all(t(:)==t(1))), lbls(:,:,j)=1; else [~,~,t]=unique(t);
lbls(:,:,j)=reshape(t,gtWidth,gtWidth); end
end
if(0), figure(1); montage2(squeeze(psReg(:,:,1,:))); drawnow; end
if(0), figure(2); montage2(lbls(:,:,:)); drawnow; end
% compute features and store
ftrs1=[reshape(psReg,[],k1)' stComputeSimFtrs(psSim,opts)];
ftrs(k+1:k+k1,:)=ftrs1(:,fids); labels(:,:,k+1:k+k1)=lbls;
k=k+k1; if(k==size(ftrs,1)), tocStatus(tid,1); break; end
tocStatus(tid,i/nImgs);
end
if(k<size(ftrs,1)), ftrs=ftrs(1:k,:); labels=labels(:,:,1:k); end
% train structured edge classifier (random decision tree)
pTree=struct('minCount',opts.minCount, 'minChild',opts.minChild, ...
'maxDepth',opts.maxDepth, 'H',opts.nClasses, 'split',opts.split);
t=labels; labels=cell(k,1); for i=1:k, labels{i}=t(:,:,i); end
pTree.discretize=@(hs,H) discretize(hs,H,opts.nSamples,opts.discretize);
tree=forestTrain(ftrs,labels,pTree); tree.hs=cell2array(tree.hs);
tree.fids(tree.child>0) = fids(tree.fids(tree.child>0)+1)-1;
if(~exist(treeDir,'dir')), mkdir(treeDir); end
save([treeFn int2str2(treeInd,3) '.mat'],'tree'); e=etime(clock,tStart);
fprintf('Training of tree %d complete (time=%.1fs).\n',treeInd,e);
RandStream.setGlobalStream( streamOrig );
end
function ftrs = stComputeSimFtrs( chns, opts )
% Compute self-similarity features (order must be compatible w mex file).
w=opts.imWidth/opts.shrink; n=opts.nCells; if(n==0), ftrs=[]; return; end
nSimFtrs=opts.nSimFtrs; nChns=opts.nChns; m=size(chns,4);
inds=round(w/n/2); inds=round((1:n)*(w+2*inds-1)/(n+1)-inds+1);
chns=reshape(chns(inds,inds,:,:),n*n,nChns,m);
ftrs=zeros(nSimFtrs/nChns,nChns,m,'single');
k=0; for i=1:n*n-1, k1=n*n-i; i1=ones(1,k1)*i;
ftrs(k+1:k+k1,:,:)=chns(i1,:,:)-chns((1:k1)+i,:,:); k=k+k1; end
ftrs = reshape(ftrs,nSimFtrs,m)';
end
function [hs,segs] = discretize( segs, nClasses, nSamples, type )
% Convert a set of segmentations into a set of labels in [1,nClasses].
persistent cache; w=size(segs{1},1); assert(size(segs{1},2)==w);
if(~isempty(cache) && cache{1}==w), [~,is1,is2]=deal(cache{:}); else
% compute all possible lookup inds for w x w patches
is=1:w^4; is1=floor((is-1)/w/w); is2=is-is1*w*w; is1=is1+1;
kp=is2>is1; is1=is1(kp); is2=is2(kp); cache={w,is1,is2};
end
% compute n binary codes zs of length nSamples
nSamples=min(nSamples,length(is1)); kp=randperm(length(is1),nSamples);
n=length(segs); is1=is1(kp); is2=is2(kp); zs=false(n,nSamples);
for i=1:n, zs(i,:)=segs{i}(is1)==segs{i}(is2); end
zs=bsxfun(@minus,zs,sum(zs,1)/n); zs=zs(:,any(zs,1));
if(isempty(zs)), hs=ones(n,1,'uint32'); segs=segs{1}; return; end
% find most representative segs (closest to mean)
[~,ind]=min(sum(zs.*zs,2)); segs=segs{ind};
% apply PCA to reduce dimensionality of zs
U=pca(zs'); d=min(5,size(U,2)); zs=zs*U(:,1:d);
% discretize zs by clustering or discretizing pca dimensions
d=min(d,floor(log2(nClasses))); hs=zeros(n,1);
for i=1:d, hs=hs+(zs(:,i)<0)*2^(i-1); end
[~,~,hs]=unique(hs); hs=uint32(hs);
if(strcmpi(type,'kmeans'))
nClasses1=max(hs); C=zs(1:nClasses1,:);
for i=1:nClasses1, C(i,:)=mean(zs(hs==i,:),1); end
hs=uint32(kmeans2(zs,nClasses,'C0',C,'nIter',1));
end
% optionally display different types of hs
for i=1:0, figure(i); montage2(cell2array(segs(hs==i))); end
end