forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf_utils_test.py
107 lines (83 loc) · 3.61 KB
/
tf_utils_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for tf_utils."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.modeling import tf_utils
def all_strategy_combinations():
return combinations.combine(
strategy=[
strategy_combinations.cloud_tpu_strategy,
strategy_combinations.mirrored_strategy_with_two_gpus,
],
mode='eager',
)
class TFUtilsTest(tf.test.TestCase, parameterized.TestCase):
@combinations.generate(all_strategy_combinations())
def test_cross_replica_concat(self, strategy):
num_cores = strategy.num_replicas_in_sync
shape = (2, 3, 4)
def concat(axis):
@tf.function
def function():
replica_value = tf.fill(shape, tf_utils.get_replica_id())
return tf_utils.cross_replica_concat(replica_value, axis=axis)
return function
def expected(axis):
values = [np.full(shape, i) for i in range(num_cores)]
return np.concatenate(values, axis=axis)
per_replica_results = strategy.run(concat(axis=0))
replica_0_result = per_replica_results.values[0].numpy()
for value in per_replica_results.values[1:]:
self.assertAllClose(value.numpy(), replica_0_result)
self.assertAllClose(replica_0_result, expected(axis=0))
replica_0_result = strategy.run(concat(axis=1)).values[0].numpy()
self.assertAllClose(replica_0_result, expected(axis=1))
replica_0_result = strategy.run(concat(axis=2)).values[0].numpy()
self.assertAllClose(replica_0_result, expected(axis=2))
@combinations.generate(all_strategy_combinations())
def test_cross_replica_concat_gradient(self, strategy):
num_cores = strategy.num_replicas_in_sync
shape = (10, 5)
@tf.function
def function():
replica_value = tf.random.normal(shape)
with tf.GradientTape() as tape:
tape.watch(replica_value)
concat_value = tf_utils.cross_replica_concat(replica_value, axis=0)
output = tf.reduce_sum(concat_value)
return tape.gradient(output, replica_value)
per_replica_gradients = strategy.run(function)
for gradient in per_replica_gradients.values:
self.assertAllClose(gradient, num_cores * tf.ones(shape))
@parameterized.parameters(('relu', True), ('relu', False),
('leaky_relu', False), ('leaky_relu', True),
('mish', True), ('mish', False), ('gelu', True))
def test_get_activations(self, name, use_keras_layer):
fn = tf_utils.get_activation(name, use_keras_layer)
self.assertIsNotNone(fn)
@combinations.generate(all_strategy_combinations())
def test_get_leaky_relu_layer(self, strategy):
@tf.function
def forward(x):
fn = tf_utils.get_activation(
'leaky_relu', use_keras_layer=True, alpha=0.1)
return strategy.run(fn, args=(x,)).values[0]
got = forward(tf.constant([-1]))
self.assertAllClose(got, tf.constant([-0.1]))
if __name__ == '__main__':
tf.test.main()