Node client library to use the Watson Developer Cloud services, a collection of REST APIs and SDKs that use cognitive computing to solve complex problems.
- Major Changes for v2
- Installation
- Usage
- Getting the Service Credentials
- Questions
- Examples
- IBM Watson Services
- Alchemy Language
- Alchemy Vision
- Alchemy Data News
- Authorization
- Concept Insights
- Conversation
- Dialog
- Document Conversion
- Language Translator
- Natural Language Classifier
- Personality Insights
- Relationship Extraction
- Retrieve and Rank
- Speech to Text
- Text to Speech
- Tone Analyzer
- Tradeoff Analytics
- Visual Insights
- Visual Recognition
- Debug
- Tests
- Open Source @ IBM
- License
- Contributing
-
Breaking: user-supplied credentials are now preferred over Bluemix-supplied credentials. The order of preference is now:
-
User-supplied credentials passed to the service constructor
-
SERVICE_NAME_USERNAME
andSERVICE_NAME_PASSWORD
environment properties (orSERVICE_NAME_API_KEY
when appropriate) -
Bluemix-supplied credentials (via the
VCAP_SERVICES
JSON-encoded environment property)
-
-
Client-side support via Browserify
examples/browserify/
shows an example app that generates tokens server-side and uses the SDK client-side via browserify.Note: Not all services currently support CORS, and therefore not all services can be used client-side. Of those that do, most require an auth token to be generated server-side via the Authorization Service
-
New recommended method for instantiating services:
var ToneAnalyzerV3 = require('watson-developer-cloud/tone-analyzer/v3'); var toneAnalyzer = new ToneAnalyzerV3({/*...*/});
This was primarily done to enable smaller bundles for client-side usage, but also gives a small performance boost for server-side usage by only loading the portion of the library that is actually needed.
The following methods will also work, but cause the entire library to be loaded:
// Alternate methods of using the library. // Not recommended, especially for client-side JS. var watson = require('watson-developer-cloud'); var toneAnalyzer = new watson.ToneAnalyzerV3({/*...*/}); var tone_analyzer = watson.tone_analyzer({version: 'v3', /*...*/});
$ npm install watson-developer-cloud --save
The examples below assume that you already have service credentials. If not, you will have to create a service in Bluemix.
If you are running your application in Bluemix, you don't need to specify the
credentials; the library will get them for you by looking at the VCAP_SERVICES
environment variable.
By default, all requests are logged. This can be disabled of by setting the X-Watson-Learning-Opt-Out
header when creating the service instance:
var myInstance = new watson.WhateverServiceV1({
/* username, password, version, etc... */
headers: {
"X-Watson-Learning-Opt-Out": "1"
}
});
You will need the username
and password
(api_key
for AlchemyAPI) credentials for each service. Service credentials are different from your Bluemix account username and password.
To get your service credentials, follow these steps:
-
Log in to Bluemix at https://bluemix.net.
-
Create an instance of the service:
- In the Bluemix Catalog, select the service you want to use.
- Under Add Service, type a unique name for the service instance in the Service name field. For example, type
my-service-name
. Leave the default values for the other options. - Click Create.
-
Copy your credentials:
- On the left side of the page, click Service Credentials to view your service credentials.
- Copy
username
andpassword
(api_key
for AlchemyAPI).
If you are having difficulties using the APIs or have a question about the IBM Watson Services, please ask a question on dW Answers or Stack Overflow.
The examples folder has basic and advanced examples.
The Watson Developer Cloud offers a variety of services for building cognitive apps.
Alchemy Language offers 12 API functions as part of its text analysis service, each of which uses sophisticated natural language processing techniques to analyze your content and add high-level semantic information.
Use the Sentiment Analysis endpoint to identify positive/negative sentiment within a sample text document.
var watson = require('watson-developer-cloud');
var alchemy_language = watson.alchemy_language({
api_key: '<api_key>'
});
var params = {
text: 'IBM Watson won the Jeopardy television show hosted by Alex Trebek'
};
alchemy_language.sentiment(params, function (err, response) {
if (err)
console.log('error:', err);
else
console.log(JSON.stringify(response, null, 2));
});
Alchemy Vision uses deep learning innovations to understand a picture's content and context. It sees complex visual scenes in their entirety —without needing any textual clues— leveraging a holistic approach to understanding the multiple objects and surroundings.
Example: Extract keywords from an image.
var watson = require('watson-developer-cloud');
var fs = require('fs');
var alchemy_vision = watson.alchemy_vision({
api_key: '<api_key>'
});
var params = {
image: fs.createReadStream('src/test/resources/obama.jpg')
};
alchemy_vision.getImageKeywords(params, function (err, keywords) {
if (err)
console.log('error:', err);
else
console.log(JSON.stringify(keywords, null, 2));
});
Alchemy Data News indexes 250k to 300k English language news and blog articles every day with historical search available for the past 60 days. Example: Get the volume data from the last 7 days using 12hs of time slice.
var watson = require('watson-developer-cloud');
var alchemy_data_news = watson.alchemy_data_news({
api_key: '<api_key>'
});
var params = {
start: 'now-1d',
end: 'now'
};
alchemy_data_news.getNews(params, function (err, news) {
if (err)
console.log('error:', err);
else
console.log(JSON.stringify(news, null, 2));
});
The Authorization service can generates tokens, this are useful when it's too cumbersome to provide a username/password pair.
Tokens are valid for 1 hour and need to be send using the X-Watson-Authorization-Token
header.
var watson = require('watson-developer-cloud');
var authorization = watson.authorization({
username: '<username>',
password: '<password>',
version: 'v1'
});
var params = {
// URL of the resource you wish to access
url: 'https://stream.watsonplatform.net/text-to-speech/api'
};
authorization.getToken(params, function (err, token) {
if (!token) {
console.log('error:', err);
} else {
// Use your token here
}
});
The Concept Insights has been deprecated, AlchemyLanguage's concept function can be used as a replacement for most Concept Insights use cases; therefore, we encourage existing Concept Insights service users to migrate to AlchemyLanguage.
Use the Conversation service to determine the intent of a message.
Note: you must first create a workspace via Bluemix. See the documentation for details.
var watson = require('watson-developer-cloud');
var conversation = watson.conversation({
username: '<username>',
password: '<password>',
version: 'v1',
version_date: '2016-07-01'
});
conversation.message({
input: 'What\'s the weather?',
workspace_id: '<workspace id>'
}, function(err, response) {
if (err) {
console.error(err);
} else {
console.log(JSON.stringify(response, null, 2));
}
});
Use the Dialog service to list all the dialogs you have.
var watson = require('watson-developer-cloud');
var dialog = watson.dialog({
username: '<username>',
password: '<password>',
version: 'v1',
version_date: '2015-12-01'
});
dialog.getDialogs({}, function (err, dialogs) {
if (err)
console.log('error:', err);
else
console.log(JSON.stringify(dialogs, null, 2));
});
var watson = require('watson-developer-cloud');
var fs = require('fs');
var document_conversion = watson.document_conversion({
username: '<username>',
password: '<password>',
version: 'v1',
version_date: '2015-12-01'
});
// convert a single document
document_conversion.convert({
// (JSON) ANSWER_UNITS, NORMALIZED_HTML, or NORMALIZED_TEXT
file: fs.createReadStream('sample-docx.docx'),
conversion_target: document_conversion.conversion_target.ANSWER_UNITS,
// Add custom configuration properties or omit for defaults
word: {
heading: {
fonts: [
{ level: 1, min_size: 24 },
{ level: 2, min_size: 16, max_size: 24 }
]
}
}
}, function (err, response) {
if (err) {
console.error(err);
} else {
console.log(JSON.stringify(response, null, 2));
}
});
See the Document Conversion integration example about how to integrate the Document Conversion service with the Retrieve and Rank service.
Translate text from one language to another or idenfity a language using the Language Translator service.
var watson = require('watson-developer-cloud');
var language_translator = watson.language_translator({
username: '<username>',
password: '<password>',
version: 'v2'
});
language_translator.translate({
text: 'A sentence must have a verb', source : 'en', target: 'es' },
function (err, translation) {
if (err)
console.log('error:', err);
else
console.log(JSON.stringify(translation, null, 2));
});
language_translator.identify({
text: 'The language translator service takes text input and identifies the language used.' },
function (err, language) {
if (err)
console.log('error:', err);
else
console.log(JSON.stringify(language, null, 2));
});
Use Natural Language Classifier service to create a classifier instance by providing a set of representative strings and a set of one or more correct classes for each as training. Then use the trained classifier to classify your new question for best matching answers or to retrieve next actions for your application.
var watson = require('watson-developer-cloud');
var natural_language_classifier = watson.natural_language_classifier({
url: 'https://gateway.watsonplatform.net/natural-language-classifier/api',
username: '<username>',
password: '<password>',
version: 'v1'
});
natural_language_classifier.classify({
text: 'Is it sunny?',
classifier_id: '<classifier-id>' },
function(err, response) {
if (err)
console.log('error:', err);
else
console.log(JSON.stringify(response, null, 2));
});
See this example to learn how to create a classifier.
Analyze text in english and get a personality profile by using the Personality Insights service.
var watson = require('watson-developer-cloud');
var personality_insights = watson.personality_insights({
username: '<username>',
password: '<password>',
version: 'v2'
});
personality_insights.profile({
text: 'Enter more than 100 unique words here...',
language: 'en' },
function (err, response) {
if (err)
console.log('error:', err);
else
console.log(JSON.stringify(response, null, 2));
});
Note: Don't forget to update the text
variable!
Relationship Extraction has been deprecated. If you want to continue using Relationship Extraction models, you can now access them with AlchemyLanguage. See the migration guide for details.
Use the Retrieve and Rank service to enhance search results with machine learning.
var retrieve = watson.retrieve_and_rank({
username: 'INSERT YOUR USERNAME FOR THE SERVICE HERE',
password: 'INSERT YOUR PASSWORD FOR THE SERVICE HERE',
version: 'v1',
url: 'https://gateway.watsonplatform.net/retrieve-and-rank/api'
});
var solrClient = retrieve.createSolrClient({
cluster_id: 'INSERT YOUR CLUSTER ID HERE',
collection_name: 'example_collection'
});
// add a document
var doc = { id : 1234, title_t : 'Hello', text_field_s: 'some text' };
solrClient.add(doc, function(err) {
if(err) {
console.log('Error indexing document: ' + err);
} else {
console.log('Indexed a document.');
solrClient.commit(function(err) {
if(err) {
console.log('Error committing change: ' + err);
} else {
console.log('Successfully commited changes.');
}
});
}
});
// search all documents
var query = solrClient.createQuery();
query.q({ '*' : '*' });
solrClient.search(query, function(err, searchResponse) {
if(err) {
console.log('Error searching for documents: ' + err);
} else {
console.log('Found ' + searchResponse.response.numFound + ' document(s).');
console.log('First document: ' + JSON.stringify(searchResponse.response.docs[0], null, 2));
}
});
Use the Speech to Text service to recognize the text from a .wav file.
var watson = require('watson-developer-cloud');
var fs = require('fs');
var speech_to_text = watson.speech_to_text({
username: '<username>',
password: '<password>',
version: 'v1'
});
var params = {
// From file
audio: fs.createReadStream('./resources/speech.wav'),
content_type: 'audio/l16; rate=44100'
};
speech_to_text.recognize(params, function(err, res) {
if (err)
console.log(err);
else
console.log(JSON.stringify(res, null, 2));
});
// or streaming
fs.createReadStream('./resources/speech.wav')
.pipe(speech_to_text.createRecognizeStream({ content_type: 'audio/l16; rate=44100' }))
.pipe(fs.createWriteStream('./transcription.txt'));
Use the Text to Speech service to synthesize text into a .wav file.
var watson = require('watson-developer-cloud');
var fs = require('fs');
var text_to_speech = watson.text_to_speech({
username: '<username>',
password: '<password>',
version: 'v1'
});
var params = {
text: 'Hello from IBM Watson',
voice: 'en-US_AllisonVoice', // Optional voice
accept: 'audio/wav'
};
// Pipe the synthesized text to a file
text_to_speech.synthesize(params).pipe(fs.createWriteStream('output.wav'));
Use the Tone Analyzer service to analyze the emotion, writing and social tones of a text.
var watson = require('watson-developer-cloud');
var tone_analyzer = watson.tone_analyzer({
username: '<username>',
password: '<password>',
version: 'v3',
version_date: '2016-05-19'
});
tone_analyzer.tone({ text: 'Greetings from Watson Developer Cloud!' },
function(err, tone) {
if (err)
console.log(err);
else
console.log(JSON.stringify(tone, null, 2));
});
Use the Tradeoff Analytics service to find the best phone that minimizes price and weight and maximizes screen size.
var watson = require('watson-developer-cloud');
var tradeoff_analytics = watson.tradeoff_analytics({
username: '<username>',
password: '<password>',
version: 'v1'
});
// From file
var params = require('./resources/problem.json');
tradeoff_analytics.dilemmas(params, function(err, res) {
if (err)
console.log(err);
else
console.log(JSON.stringify(res, null, 2));
});
The Watson Visual Insights Service will be withdrawn. The Watson Visual Insights Service tile will be removed from the Bluemix catalog on July 3, 2016, after which you cannot provision new instances of this service.
Use the Visual Recognition service to recognize the following picture.
var watson = require('watson-developer-cloud');
var fs = require('fs');
var visual_recognition = watson.visual_recognition({
api_key: '<api_key>',
version: 'v3',
version_date: '2016-05-19'
});
var params = {
images_file: fs.createReadStream('./resources/car.png')
};
visual_recognition.classify(params, function(err, res) {
if (err)
console.log(err);
else
console.log(JSON.stringify(res, null, 2));
});
By default, the library tries to use Basic Auth and will ask for api_key
or username
and password
and send an Authorization: Basic XXXXXXX
. You can avoid this by using:
use_unauthenticated
.
var watson = require('watson-developer-cloud');
var dialog = watson.dialog({
version: 'v1',
use_unauthenticated: true
});
This library relies on the request
npm module writted by
request to call the Watson Services. To debug the apps, add
'request' to the NODE_DEBUG
environment variable:
$ NODE_DEBUG='request' node app.js
where app.js
is your Node.js file.
Running all the tests:
$ npm test
Running a specific test:
$ mocha -g '<test name>'
Find more open source projects on the IBM Github Page.
This library is licensed under Apache 2.0. Full license text is available in COPYING.
See CONTRIBUTING.