- Clone the repo
- Run
yarn install
The following env variables are used in the repo. One way to set up these env
variables is to create a .env
in the root directory of this repo.
Required env variables:
ETHERSCAN_KEY=<key>
INFURA_KEY=<key>
Optional env variables:
SNOWTRACE_KEY=<key>
COINMARKETCAP_API_KEY=<key>
REPORT_GAS=true
ETH_PK=<eth-key> # takes precedence over MNEMONIC
MNEMONIC=<mnemonic>
The repo's Git hooks are defined the .githooks/
directory.
You can enable them by running:
# requires git version 2.9 or greater
git config core.hooksPath .githooks
You can skip pre-commit checks with the -n
flag:
git commit -n -m "commit without running pre-commit hook"
Currently, Avalanche mainnet and testnet (fuji) are supported. This means that deployment scripts, scenarios, and spider all work for Avalanche.
To use this project with other chains, the block explorer API key for your target chain must be set in .env (e.g. SNOWTRACE_KEY
for Avalanche).
An example deployment command looks like:
yarn deploy --network fuji
Comet.sol - Contract that inherits CometMainInterface.sol
and is the implementation for most of Comet's core functionalities. A small set of functions that do not fit within this contract are implemented in CometExt.sol
instead, which Comet DELEGATECALL
s to for unrecognized function signatures.
CometExt.sol - Contract that inherits CometExtInterface.sol
and is the implementation for extra functions that do not fit within Comet.sol
, such as approve
.
CometInterface.sol - Abstract contract that inherits CometMainInterface.sol
and CometExtInterface.sol
. This interface contains all the functions and events for Comet.sol
and CometExt.sol
and is ERC-20 compatible.
CometMainInterface.sol - Abstract contract that inherits CometCore.sol
and contains all the functions and events for Comet.sol
.
CometExtInterface.sol - Abstract contract that inherits CometCore.sol
and contains all the functions and events for CometExt.sol
.
CometCore.sol - Abstract contract that inherits CometStorage.sol
, CometConfiguration.sol
, and CometMath.sol
. This contracts contains functions and constants that are shared between Comet.sol
and CometExt.sol
.
CometStorage.sol - Contract that defines the storage variables used for the Comet protocol.
CometConfiguration.sol - Contract that defines the configuration structs passed into the constructors for Comet.sol
and CometExt.sol
.
CometMath.sol - Contract that defines math functions that are used throughout the Comet codebase.
CometFactory.sol - Contract that inherits CometConfiguration.sol
and is used to deploy new versions of Comet.sol
. This contract will mainly be called by the Configurator during the governance upgrade process.
Configurator.sol - Contract that inherits ConfiguratorStorage.sol
. This contract manages Comet's configurations and deploys new implementations of Comet.
ConfiguratorStorage.sol - Contract that inherits CometConfiguration.sol
and defines the storage variables for Configurator.sol
.
Bulker.sol - Contract that allows multiple Comet functions to be called in a single transaction.
CometRewards.sol - Contract that allows Comet users to claim rewards based on their protocol participation.
Third-party contracts (e.g. OZ proxies) live under contracts/vendor
.
There are currently two Comet-related contracts that extend directly from the vendor contracts. The contracts are:
ConfiguratorProxy.sol - This contract inherits OZ's TransparentUpgradeableProxy.sol
. We override the _beforeFallback
function so that the proxy's admin can directly call the implementation. We only need this feature for the Configurator's proxy.
CometProxyAdmin.sol - This contract inherits OZ's ProxyAdmin.sol
. We created a new function called deployAndUpgradeTo
, which calls Configurator.deploy(0xCometProxy)
and upgrades Comet proxy's implementation to this newly deployed Comet contract. This function is needed so we can pass the address of the new Comet to the Proxy.upgrade()
call in one transaction.
Look at the scripts section inside package.json
to find all commands.
Compiles contracts.
yarn build
Contract linting is done via Solhint.
yarn lint-contracts
yarn lint-contracts:fix // will attempt to automatically fix errors
Solhint configuration is saved in .solhint.json
.
Runs all tests in the test
directory.
yarn test
Runs all tests while also evaluating code coverage.
yarn test:coverage
The coverage report will be saved in the coverage
directory.
Set up the following env variables:
REPORT_GAS=true
COINMARKETCAP_API_KEY=your_coinmarket_api_key
optional, only if you want to see cost in USD
Deploys contracts to a specified chain using a deployment script.
yarn deploy --network mainnet
The spider script programmatically fetches all protocol-related contracts from mainnet. This is just a prototype and it currently pulls relevant contracts for V2.
Note: Make sure $ETHERSCAN_KEY is set as an env variable.
npx hardhat spider --network mainnet
You can delete all spider artifacts using the --clean
flag:
npx hardhat spider --clean
The spider script uses configuration from two files to start its crawl:
roots.json
relations.json
Both these contracts are committed to the repo under deployments/<chain>/<file>.json
. The roots.json
config contains the address of the root contract for spider to start crawling from. The relations.json
config defines all the different relationships and rules that spider will follow when crawling. The following section will go over in detail the set of rules defined in relations.json
.
Currently, these are the 3 types of rules in relations.json
that can be defined for a contract:
- Alias - A rule to derive the key that is assigned to this contract in
pointers.json
. If this rule is not provided, the contract name will be used as the alias instead. This rule has two special characters:@
and+
.@
followed by a function name is used to read a value from that contract's function.+
is used as a delimiter. Example:@symbol+Delegator
will equate tocDaiDelegator
forcDai
's delegator contract. - Relations - The names of the contract's functions to call to fetch dependent contracts.
- Implementation - The name of the contract's function to call to grab its implementation address. This should only be defined for proxy contracts.
Scenarios are high-level property and ad-hoc tests for the Comet protocol. To run and check scenarios:
npx hardhat scenario
For more information, see SCENARIO.md.
XXX explain/get to
deploying a new root contract?
deployments/${network}/${market}/deploy.ts
open PR, run deploy
workflow through CI
will commit deployments/
diffs to branch
otherwise
deployments/${network}/${market}/migrations/XXX.ts
open PR
if prepare step
run prepare-migration
workflow through CI
XXX currently required to run to obtain artifact for enact
run enact-migration
workflow through CI
wait for governance/execution
merge PR with completed change
New deployment?
copy deploy.ts
scripts from existing instance
ignore migrations
continue same as above
XXX simplify to above
- run
1644388553_deploy_kovan
migration,prepare
step - update
deployments/kovan/roots.json
with the new roots from step 1 - run
1649108513_upgrade_timelock_and_set_up_governor
migration,prepare
step - run
1649108513_upgrade_timelock_and_set_up_governor
migration,enact
step - find the proposal ID step from 4; manually execute the proposal via the newly-deployed Governor
- run
1651257129_bulker_and_rewards
migration,prepare
step - update
deployments/kovan/roots.json
with the rewards and bulker roots from step 6 - run
1653357106_mint_to_fauceteer
migration,prepare
step - run
1653512186_seed_rewards_with_comp
,prepare
step - run
1653512186_seed_rewards_with_comp
,enact
step - execute the proposal from step 10
- run
1644432723_deploy_fuji
,prepare
step - update
deployments/fuji/roots.json
with new roots from step 1 - run
1649117302_upgrade_timelock_and_set_up_governor
,prepare
step - run
1649117302_upgrade_timelock_and_set_up_governor
,enact
step - find the proposal ID step from 4; manually execute the proposal via the newly-deployed Governor
- run
1651257139_rewards
,prepare
step - update
deployments/fuji/roots.json
with new rewards root from step 6 - run
1653431603_mint_to_fauceteer
,prepare
step
- make sure that the deploying address has at least 2 units of the chain's native asset (i.e. 2 ETH for Kovan, 2 AVAX for Fuji)
This repo includes a contract (Liquidator.sol) that will absorb an underwater position, purchase the absorbed collateral, and then attempt to sell it on Uniswap for a profit.
To run the bot, you'll need the address of a deployed version of the Liquidator contract (or you can deploy a new instance of it yourself):
LIQUIDATOR_ADDRESS="0xABC..." yarn liquidation-bot
Initiating transactions this way via the public mempool will almost certainly get frontrun, but you might be able to use flashbots to mask your transactions from frontrunners.