In addition to the slides, here are some helpful links after the workshop
- Git for scientists, a tutorial http://nyuccl.org/pages/GitTutorial/
- R cheatsheets https://www.rstudio.com/resources/cheatsheets/
On tidy data in R:
-
A helpful tutorial https://rpubs.com/bradleyboehmke/data_wrangling
-
Extra reading: what is tidy data https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
-
Tidyverse style guide http://style.tidyverse.org/
-
Switching to tidyverse http://www.significantdigits.org/2017/10/switching-from-base-r-to-tidyverse/
Tidytext
- Text mining with R - tidytext by Julia Silge & David Anderson http://tidytextmining.com/
Sample analyses with tidytext that were mentioned in the workshop
- 100k story plots analysed: http://varianceexplained.org/r/tidytext-plots/
- Phrase repetition in musicals: https://www.hvitfeldt.me/2017/06/05/repetition-in-musicals-with-tidytext/ (https://emilhvitfeldt.github.io/Repetitive_Musicals/)
- Dastest growing words in hackernews: http://varianceexplained.org/r/hn-trends/
- Text mining seinfeld: http://mdgbeck.netlify.com/post/tidytext-analysis-of-seinfeld/
- Sentiment analysis and haikus http://www.bernhardlearns.com/2017/04/sentiment-analysis-with-r-and-tidytext.html
- sentiment analysis + 19th century poems http://blog.eighty20.co.za/package%20exploration/2017/06/12/sentiment-blog-post/
- Use of tidytext for data other than a textcorpus https://medium.com/towards-data-science/five-ways-to-spend-a-thursday-34432f9ee93e