-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcheckpoint.py
686 lines (591 loc) · 26.4 KB
/
checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
#!/usr/bin/env python3
"""Functions that handle saving and loading of checkpoints."""
import os
import torch
import torch.nn as nn
import utils.distributed as du
import utils.logging as logging
from utils.env import checkpoint_pathmgr as pathmgr
from tabulate import tabulate
logger = logging.get_logger(__name__)
import copy
import logging
import re
from typing import Dict, List
import torch
from tabulate import tabulate
def convert_basic_c2_names(original_keys):
"""
Apply some basic name conversion to names in C2 weights.
It only deals with typical backbone models.
Args:
original_keys (list[str]):
Returns:
list[str]: The same number of strings matching those in original_keys.
"""
layer_keys = copy.deepcopy(original_keys)
layer_keys = [
{"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys
] # some hard-coded mappings
layer_keys = [k.replace("_", ".") for k in layer_keys]
layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys]
layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys]
# Uniform both bn and gn names to "norm"
layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys]
layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys]
layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys]
layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys]
layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys]
layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys]
layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys]
layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys]
layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys]
layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys]
# stem
layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys]
# to avoid mis-matching with "conv1" in other components (e.g. detection head)
layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys]
# layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5)
# layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys]
# layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys]
# layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys]
# layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys]
# blocks
layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys]
layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys]
layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys]
layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys]
# DensePose substitutions
layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys]
layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys]
layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys]
layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys]
layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys]
return layer_keys
def convert_c2_detectron_names(weights):
"""
Map Caffe2 Detectron weight names to Detectron2 names.
Args:
weights (dict): name -> tensor
Returns:
dict: detectron2 names -> tensor
dict: detectron2 names -> C2 names
"""
logger = logging.getLogger(__name__)
logger.info("Renaming Caffe2 weights ......")
original_keys = sorted(weights.keys())
layer_keys = copy.deepcopy(original_keys)
layer_keys = convert_basic_c2_names(layer_keys)
# --------------------------------------------------------------------------
# RPN hidden representation conv
# --------------------------------------------------------------------------
# FPN case
# In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then
# shared for all other levels, hence the appearance of "fpn2"
layer_keys = [
k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys
]
# Non-FPN case
layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys]
# --------------------------------------------------------------------------
# RPN box transformation conv
# --------------------------------------------------------------------------
# FPN case (see note above about "fpn2")
layer_keys = [
k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas")
for k in layer_keys
]
layer_keys = [
k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits")
for k in layer_keys
]
# Non-FPN case
layer_keys = [
k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys
]
layer_keys = [
k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits")
for k in layer_keys
]
# --------------------------------------------------------------------------
# Fast R-CNN box head
# --------------------------------------------------------------------------
layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys]
layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys]
layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys]
layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys]
# 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s
layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys]
# --------------------------------------------------------------------------
# FPN lateral and output convolutions
# --------------------------------------------------------------------------
def fpn_map(name):
"""
Look for keys with the following patterns:
1) Starts with "fpn.inner."
Example: "fpn.inner.res2.2.sum.lateral.weight"
Meaning: These are lateral pathway convolutions
2) Starts with "fpn.res"
Example: "fpn.res2.2.sum.weight"
Meaning: These are FPN output convolutions
"""
splits = name.split(".")
norm = ".norm" if "norm" in splits else ""
if name.startswith("fpn.inner."):
# splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight']
stage = int(splits[2][len("res") :])
return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1])
elif name.startswith("fpn.res"):
# splits example: ['fpn', 'res2', '2', 'sum', 'weight']
stage = int(splits[1][len("res") :])
return "fpn_output{}{}.{}".format(stage, norm, splits[-1])
return name
layer_keys = [fpn_map(k) for k in layer_keys]
# --------------------------------------------------------------------------
# Mask R-CNN mask head
# --------------------------------------------------------------------------
# roi_heads.StandardROIHeads case
layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys]
layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys]
layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys]
# roi_heads.Res5ROIHeads case
layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys]
# --------------------------------------------------------------------------
# Keypoint R-CNN head
# --------------------------------------------------------------------------
# interestingly, the keypoint head convs have blob names that are simply "conv_fcnX"
layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys]
layer_keys = [
k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys
]
layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys]
# --------------------------------------------------------------------------
# Done with replacements
# --------------------------------------------------------------------------
assert len(set(layer_keys)) == len(layer_keys)
assert len(original_keys) == len(layer_keys)
new_weights = {}
new_keys_to_original_keys = {}
for orig, renamed in zip(original_keys, layer_keys):
new_keys_to_original_keys[renamed] = orig
if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."):
# remove the meaningless prediction weight for background class
new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1
new_weights[renamed] = weights[orig][new_start_idx:]
logger.info(
"Remove prediction weight for background class in {}. The shape changes from "
"{} to {}.".format(
renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape)
)
)
elif renamed.startswith("cls_score."):
# move weights of bg class from original index 0 to last index
logger.info(
"Move classification weights for background class in {} from index 0 to "
"index {}.".format(renamed, weights[orig].shape[0] - 1)
)
new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]])
else:
new_weights[renamed] = weights[orig]
return new_weights, new_keys_to_original_keys
def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]):
"""
Params in the same submodule are grouped together.
Args:
keys: names of all parameters
original_names: mapping from parameter name to their name in the checkpoint
Returns:
dict[name -> all other names in the same group]
"""
def _submodule_name(key):
pos = key.rfind(".")
if pos < 0:
return None
prefix = key[: pos + 1]
return prefix
all_submodules = [_submodule_name(k) for k in keys]
all_submodules = [x for x in all_submodules if x]
all_submodules = sorted(all_submodules, key=len)
ret = {}
for prefix in all_submodules:
group = [k for k in keys if k.startswith(prefix)]
if len(group) <= 1:
continue
original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group])
if len(original_name_lcp) == 0:
# don't group weights if original names don't share prefix
continue
for k in group:
if k in ret:
continue
ret[k] = group
return ret
def _longest_common_prefix(names):
"""
["abc.zfg", "abc.zef"] -> "abc."
"""
names = [n.split(".") for n in names]
m1, m2 = min(names), max(names)
ret = [a for a, b in zip(m1, m2) if a == b]
ret = ".".join(ret) + "." if len(ret) else ""
return ret
def _longest_common_prefix_str(names):
m1, m2 = min(names), max(names)
lcp = []
for a, b in zip(m1, m2):
if a == b:
lcp.append(a)
else:
break
lcp = "".join(lcp)
return lcp
def _group_str(names):
"""
Turn "common1", "common2", "common3" into "common{1,2,3}"
"""
lcp = _longest_common_prefix_str(names)
rest = [x[len(lcp) :] for x in names]
rest = "{" + ",".join(rest) + "}"
ret = lcp + rest
# add some simplification for BN specifically
ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*")
ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*")
return ret
def make_checkpoint_dir(path_to_job):
"""
Creates the checkpoint directory (if not present already).
Args:
path_to_job (string): the path to the folder of the current job.
"""
checkpoint_dir = os.path.join(path_to_job, "checkpoints")
# Create the checkpoint dir from the master process
if du.is_master_proc() and not pathmgr.exists(checkpoint_dir):
try:
pathmgr.mkdirs(checkpoint_dir)
except Exception:
pass
return checkpoint_dir
def get_checkpoint_dir(path_to_job):
"""
Get path for storing checkpoints.
Args:
path_to_job (string): the path to the folder of the current job.
"""
return os.path.join(path_to_job, "checkpoints")
def get_path_to_checkpoint(path_to_job, epoch):
"""
Get the full path to a checkpoint file.
Args:
path_to_job (string): the path to the folder of the current job.
epoch (int): the number of epoch for the checkpoint.
"""
name = "checkpoint_epoch_{:05d}.pyth".format(epoch)
return os.path.join(get_checkpoint_dir(path_to_job), name)
def get_last_checkpoint(path_to_job):
"""
Get the last checkpoint from the checkpointing folder.
Args:
path_to_job (string): the path to the folder of the current job.
"""
name = "checkpoint_latest.pyth"
return os.path.join(get_checkpoint_dir(path_to_job), name)
def has_checkpoint(path_to_job):
"""
Determines if the given directory contains a checkpoint.
Args:
path_to_job (string): the path to the folder of the current job.
"""
d = get_checkpoint_dir(path_to_job)
files = pathmgr.ls(d) if pathmgr.exists(d) else []
return any("checkpoint" in f for f in files)
def is_checkpoint_epoch(cfg, cur_iter):
"""
Determine if a checkpoint should be saved on current epoch.
Args:
cfg (CfgNode): configs to save.
cur_epoch (int): current number of epoch of the model.
"""
if cur_iter + 1 == cfg.SOLVER.MAX_EPOCH:
return True
return (cur_iter + 1) % cfg.TRAIN.CHECKPOINT_PERIOD == 0
def save_checkpoint(path_to_job, model, optimizer, iter, cfg, scaler=None):
"""
Save a checkpoint.
Args:
model (model): model to save the weight to the checkpoint.
optimizer (optim): optimizer to save the historical state.
epoch (int): current number of epoch of the model.
cfg (CfgNode): configs to save.
scaler (GradScaler): the mixed precision scale.
"""
# Save checkpoints only from the master process.
if not du.is_master_proc(cfg.NUM_GPUS * cfg.NUM_SHARDS):
return
# Ensure that the checkpoint dir exists.
pathmgr.mkdirs(get_checkpoint_dir(path_to_job))
# Omit the DDP wrapper in the multi-gpu setting.
sd = model.module.state_dict() if cfg.NUM_GPUS > 1 else model.state_dict()
# Record the state.
checkpoint = {
"epoch": iter,
"model_state": sd,
"optimizer_state": optimizer.state_dict(),
"cfg": cfg.dump(),
}
if scaler is not None:
checkpoint["scaler_state"] = scaler.state_dict()
# Write the current epoch checkpoint & update the latest epoch checkpoint
path_to_checkpoint = get_path_to_checkpoint(path_to_job, iter + 1)
with pathmgr.open(path_to_checkpoint, "wb") as f:
torch.save(checkpoint, f)
path_to_latest_checkpoint = get_last_checkpoint(path_to_job)
with pathmgr.open(path_to_latest_checkpoint, "wb") as f:
torch.save(checkpoint, f)
return path_to_checkpoint
def load_checkpoint(
path_to_checkpoint,
models,
optimizer = None,
model_keys = ['model'],
exclude_key = None,
to_match = {},
to_print = True,
):
"""
Load the checkpoint from the given file.
"""
assert pathmgr.exists(path_to_checkpoint), "Checkpoint '{}' not found".format(
path_to_checkpoint
)
if to_print:
logger.info("Loading network weights from {}.".format(path_to_checkpoint))
# Load the checkpoint on CPU to avoid GPU mem spike.
def find_model_key(keys, model_key):
for k in keys:
if model_key in k:
return k
for k in keys:
if 'model' in k:
if to_print:
logger.info('Have not found model state_dict according to the given key, but using the "model" as key instead!')
return k
with pathmgr.open(path_to_checkpoint, "rb") as f:
checkpoint = torch.load(f, map_location="cpu")
for i, model in enumerate(models):
ms = model
#ms = model.module if data_parallel else model # Account for the DDP wrapper in the multi-gpu setting.
model_dict = ms.state_dict()
k = find_model_key(checkpoint.keys(), model_keys[i])
pre_train_dict = checkpoint[k]
ms.load_state_dict(align_and_update_state_dicts(model_dict, pre_train_dict, exclude_key = exclude_key, to_print = to_print, to_match = to_match), strict=False)
if optimizer and 'optimizaer' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
best_val_stats = checkpoint['best_val_stats'] if 'best_val_stats' in checkpoint else None
return checkpoint['epoch'], best_val_stats
def load_test_checkpoint(cfg, model):
"""
Loading checkpoint logic for testing.
"""
# Load a checkpoint to test if applicable.
if cfg.TEST.CHECKPOINT_FILE_PATH != "":
load_checkpoint(
cfg.TEST.CHECKPOINT_FILE_PATH,
model,
cfg.NUM_GPUS > 1,
None,
squeeze_temporal=cfg.TEST.CHECKPOINT_SQUEEZE_TEMPORAL,
)
elif has_checkpoint(cfg.OUTPUT_DIR):
last_checkpoint = get_last_checkpoint(cfg.OUTPUT_DIR)
load_checkpoint(last_checkpoint, model, cfg.NUM_GPUS > 1)
elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "":
# If no checkpoint found in TEST.CHECKPOINT_FILE_PATH or in the current
# checkpoint folder, try to load checkpoint from
# TRAIN.CHECKPOINT_FILE_PATH and test it.
load_checkpoint(
cfg.TRAIN.CHECKPOINT_FILE_PATH,
model,
cfg.NUM_GPUS > 1,
None,
)
else:
logger.info(
"Unknown way of loading checkpoint. Using random initialization, only for debugging."
)
def load_train_checkpoint(cfg, model, optimizer, scaler=None):
"""
Loading checkpoint logic for training.
"""
if cfg.TRAIN.AUTO_RESUME and has_checkpoint(cfg.OUTPUT_DIR):
last_checkpoint = get_last_checkpoint(cfg.OUTPUT_DIR)
logger.info("Load from last checkpoint, {}.".format(last_checkpoint))
checkpoint_epoch = load_checkpoint(
last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer, scaler=scaler
)
start_epoch = checkpoint_epoch + 1
elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "" and cfg.TRAIN.FINETUNE:
logger.info("Finetune from given checkpoint file.")
checkpoint_epoch = load_checkpoint(
cfg.TRAIN.CHECKPOINT_FILE_PATH,
model,
cfg.NUM_GPUS > 1,
optimizer,
scaler=scaler,
epoch_reset=cfg.TRAIN.CHECKPOINT_EPOCH_RESET,
freeze_pretrain=cfg.TRAIN.FREEZE_PRETRAIN,
)
start_epoch = checkpoint_epoch + 1 if cfg.TRAIN.FINETUNE_START_EPOCH == 0 else cfg.TRAIN.FINETUNE_START_EPOCH
elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "":
logger.info("Load from given checkpoint file.")
checkpoint_epoch = load_checkpoint(
cfg.TRAIN.CHECKPOINT_FILE_PATH,
model,
cfg.NUM_GPUS > 1,
optimizer,
scaler=scaler,
epoch_reset=cfg.TRAIN.CHECKPOINT_EPOCH_RESET,
)
start_epoch = checkpoint_epoch + 1
else:
start_epoch = 0
return start_epoch
# Note the current matching is not symmetric.
# it assumes model_state_dict will have longer names.
def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, exclude_key = None, to_print = True, to_match = {}):
"""
Match names between the two state-dict, and returns a new chkpt_state_dict with names
converted to match model_state_dict with heuristics. The returned dict can be later
loaded with fvcore checkpointer.
"""
if exclude_key is not None:
model_keys = sorted([k for k in model_state_dict.keys() if exclude_key not in k])
else:
model_keys = sorted(model_state_dict.keys())
original_keys = {x: x for x in ckpt_state_dict.keys()}
ckpt_keys = sorted(ckpt_state_dict.keys())
def in_to_match(a, b):
for k in to_match.keys():
c = b.replace(k, to_match[k])
if a == c or a.endswith("." + c):
return True
return False
def match(a, b):
if (a == b or a.endswith("." + b) or in_to_match(a, b)) and to_print:
print('matched')
print(a, '--', b)
return a == b or a.endswith("." + b) or in_to_match(a, b)
# get a matrix of string matches, where each (i, j) entry correspond to the size of the
# ckpt_key string, if it matches
match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys]
match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys))
# use the matched one with longest size in case of multiple matches
max_match_size, idxs = match_matrix.max(1)
# remove indices that correspond to no-match
idxs[max_match_size == 0] = -1
#logger = logging.getLogger(__name__)
# matched_pairs (matched checkpoint key --> matched model key)
matched_keys = {}
result_state_dict = {}
for idx_model, idx_ckpt in enumerate(idxs.tolist()):
if idx_ckpt == -1:
continue
key_model = model_keys[idx_model]
key_ckpt = ckpt_keys[idx_ckpt]
value_ckpt = ckpt_state_dict[key_ckpt]
shape_in_model = model_state_dict[key_model].shape
if shape_in_model != value_ckpt.shape:
logger.warning(
"Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format(
key_ckpt, value_ckpt.shape, key_model, shape_in_model
)
)
if shape_in_model[0] != value_ckpt.shape[0] and len(shape_in_model) == len(value_ckpt.shape): # different embed_dim setup
logger.warning(
"{} will not be loaded. Please double check and see if this is desired.".format(
key_ckpt
)
)
logger.warning('--- shape_in_model: {}'.format(shape_in_model))
logger.warning('--- ckpt shape: {}'.format(value_ckpt.shape))
else:
logger.warning(
"{} will be loaded for the center frame with the weights from the 2D conv layers in pre-trained models and\
initialize other weights as zero. Please double check and see if this is desired.".format(
key_ckpt
)
)
assert key_model not in result_state_dict
logger.warning('--- shape_in_model: {}'.format(shape_in_model))
logger.warning('--- ckpt shape: {}'.format(value_ckpt.shape))
# load pre-trained 2D weights on the parameters' center termporal frame while others as 0. (B, C, (T,) H, W)
nn.init.constant_(model_state_dict[key_model], 0.0)
model_state_dict[key_model][:, :, int(shape_in_model[2] / 2)] = value_ckpt
result_state_dict[key_model] = model_state_dict[key_model]
logger.warning('--- loaded to T: {}'.format(int(shape_in_model[2] / 2)))
logger.warning('--- reshaped ckpt: {}'.format(result_state_dict[key_model].shape))
matched_keys[key_ckpt] = key_model
else:
assert key_model not in result_state_dict
result_state_dict[key_model] = value_ckpt
if key_ckpt in matched_keys: # already added to matched_keys
logger.error(
"Ambiguity found for {} in checkpoint!"
"It matches at least two keys in the model ({} and {}).".format(
key_ckpt, key_model, matched_keys[key_ckpt]
)
)
raise ValueError("Cannot match one checkpoint key to multiple keys in the model.")
if to_print:
logger.info('Matching {} to {}'.format(key_ckpt, key_model))
matched_keys[key_ckpt] = key_model
# logging:
matched_model_keys = sorted(matched_keys.values())
if len(matched_model_keys) == 0:
logger.warning("No weights in checkpoint matched with model.")
return ckpt_state_dict
common_prefix = _longest_common_prefix(matched_model_keys)
rev_matched_keys = {v: k for k, v in matched_keys.items()}
original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys}
model_key_groups = _group_keys_by_module(matched_model_keys, original_keys)
table = []
memo = set()
for key_model in matched_model_keys:
if to_print:
print(' matched:', key_model)
if key_model in memo:
continue
if key_model in model_key_groups:
group = model_key_groups[key_model]
memo |= set(group)
shapes = [tuple(model_state_dict[k].shape) for k in group]
table.append(
(
_longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*",
_group_str([original_keys[k] for k in group]),
" ".join([str(x).replace(" ", "") for x in shapes]),
)
)
else:
key_checkpoint = original_keys[key_model]
shape = str(tuple(model_state_dict[key_model].shape))
table.append((key_model[len(common_prefix) :], key_checkpoint, shape))
table_str = tabulate(
table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"]
)
if to_print:
logger.info(
"Following weights matched with "
+ (f"submodule {common_prefix[:-1]}" if common_prefix else "model")
+ ":\n"
+ table_str
)
unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())]
unmatched_model_keys = [k for k in model_keys if k not in set(matched_keys.values())]
#for k in unmatched_ckpt_keys:
#result_state_dict[k] = ckpt_state_dict[k]
#result_state_dict[k] = model_state_dict[k]
#logger.info('unmatched:', k)
for k in unmatched_model_keys:
#logger.info('unmatched:', k)
result_state_dict[k] = model_state_dict[k]
return result_state_dict