forked from pulp-platform/FlooNoC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfloo_router.sv
249 lines (216 loc) · 10.1 KB
/
floo_router.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// Copyright 2022 ETH Zurich and University of Bologna.
// Solderpad Hardware License, Version 0.51, see LICENSE for details.
// SPDX-License-Identifier: SHL-0.51
//
// Michael Rogenmoser <[email protected]>
`include "common_cells/assertions.svh"
/// A simple router with configurable number of ports, physical and virtual channels, and input/output buffers
module floo_router
import floo_pkg::*;
#(
parameter int unsigned NumRoutes = 0,
parameter int unsigned NumVirtChannels = 0,
parameter int unsigned NumPhysChannels = 1,
parameter type flit_t = logic,
parameter int unsigned ChannelFifoDepth = 0,
parameter int unsigned OutputFifoDepth = 0,
parameter route_algo_e RouteAlgo = IdTable,
/// Used for ID-based and XY routing
parameter int unsigned IdWidth = 0,
parameter type id_t = logic [IdWidth-1:0],
parameter type border_id_t = logic,
parameter border_id_t BorderId = 0,
/// Used for ID-based routing
parameter int unsigned NumAddrRules = 1, // initial to 1 to avoid id_route_map_i start from -1:0
parameter type addr_rule_t = logic,
/// Configuration parameters for special network topologies
parameter int unsigned NumInput = NumRoutes,
parameter int unsigned NumOutput = NumRoutes,
parameter bit XYRouteOpt = 1'b1,
parameter bit NoLoopback = 1'b1
) (
input logic clk_i,
input logic rst_ni,
input logic test_enable_i,
input id_t xy_id_i, // if unused assign to '0
input addr_rule_t [NumAddrRules-1:0] id_route_map_i, // if unused assign to '0
input logic [NumInput-1:0][NumVirtChannels-1:0] valid_i, // NOT AXI, requires ready first
output logic [NumInput-1:0][NumVirtChannels-1:0] ready_o, // NOT AXI, requires ready first
input flit_t [NumInput-1:0][NumPhysChannels-1:0] data_i,
output logic [NumOutput-1:0][NumVirtChannels-1:0] valid_o, // NOT AXI, requires ready first
input logic [NumOutput-1:0][NumVirtChannels-1:0] ready_i, // NOT AXI, requires ready first
output flit_t [NumOutput-1:0][NumPhysChannels-1:0] data_o
);
// TODO MICHAERO: assert NumPhysChannels <= NumVirtChannels
flit_t [NumInput-1:0][NumVirtChannels-1:0] in_data, in_routed_data;
logic [NumInput-1:0][NumVirtChannels-1:0] in_valid, in_ready;
logic [NumInput-1:0][NumVirtChannels-1:0][NumOutput-1:0] route_mask;
// Router input part
for (genvar in_route = 0; in_route < NumInput; in_route++) begin : gen_input
for (genvar v_chan = 0; v_chan < NumVirtChannels; v_chan++) begin : gen_virt_input
logic [cf_math_pkg::idx_width(NumPhysChannels)-1:0] in_phys_channel;
if (NumPhysChannels == 1) begin : gen_single_phys
assign in_phys_channel = '0;
end else if (NumPhysChannels == NumVirtChannels) begin : gen_virt_eq_phys
assign in_phys_channel = v_chan;
end else begin : gen_odd_phys
$fatal(1, "unimplemented");
end
(* ungroup *)
stream_fifo_optimal_wrap #(
.Depth (ChannelFifoDepth),
.type_t(flit_t)
) i_stream_fifo (
.clk_i (clk_i),
.rst_ni (rst_ni),
.testmode_i(test_enable_i),
.flush_i (1'b0),
.usage_o (),
.data_i (data_i[in_route][in_phys_channel]),
.valid_i (valid_i[in_route][v_chan]),
.ready_o (ready_o[in_route][v_chan]),
.data_o (in_data[in_route][v_chan]),
.valid_o (in_valid[in_route][v_chan]),
.ready_i (in_ready[in_route][v_chan])
);
floo_route_select #(
.NumRoutes (NumOutput),
.flit_t (flit_t),
.RouteAlgo (RouteAlgo),
.IdWidth (IdWidth),
.border_id_t (border_id_t),
.BorderId (BorderId),
.id_t (id_t),
.NumAddrRules(NumAddrRules),
.addr_rule_t (addr_rule_t)
) i_route_select (
.clk_i,
.rst_ni,
.test_enable_i,
.xy_id_i (xy_id_i),
.id_route_map_i(id_route_map_i),
.channel_i (in_data[in_route][v_chan]),
.valid_i (in_valid[in_route][v_chan]),
.ready_i (in_ready[in_route][v_chan]),
.channel_o (in_routed_data[in_route][v_chan]),
.route_sel_o (route_mask[in_route][v_chan])
);
end
end
localparam int unsigned NumInputLimited = NoLoopback ? NumInput - 1 : NumInput;
logic [NumOutput-1:0][NumVirtChannels-1:0][NumInputLimited-1:0] masked_valid, masked_ready;
logic [NumInput-1:0][NumVirtChannels-1:0][NumOutput-1:0] masked_all_ready;
flit_t [NumOutput-1:0][NumVirtChannels-1:0][NumInputLimited-1:0] masked_data;
// TODO MICHAERO: reduce connections if (RouteAlgo == XYRouting)
for (genvar in_route = 0; in_route < NumInput; in_route++) begin : gen_hs_input
for (genvar v_chan = 0; v_chan < NumVirtChannels; v_chan++) begin : gen_hs_virt
for (genvar out_route = 0; out_route < NumOutput; out_route++) begin : gen_hs_output
localparam int unsigned ModInRoute =
in_route < out_route && NoLoopback ? in_route : in_route-1;
if (in_route == out_route && NoLoopback) begin : gen_inout_identical
assign masked_all_ready[in_route][v_chan][out_route] = '0;
// TODO MICHAERO: assert no loopback routing!!!
end else if ((RouteAlgo == XYRouting) && XYRouteOpt &&
(in_route == South || in_route == North) &&
(out_route == East || out_route == West)) begin : gen_xy_opt
assign masked_all_ready[in_route][v_chan][out_route] = '0;
assign masked_valid[out_route][v_chan][ModInRoute] = '0;
assign masked_data[out_route][v_chan][ModInRoute] = '0;
end else begin : gen_default
assign masked_all_ready[in_route][v_chan][out_route] =
masked_ready[out_route][v_chan][ModInRoute];
assign masked_valid[out_route][v_chan][ModInRoute] =
in_valid[in_route][v_chan] & route_mask[in_route][v_chan][out_route];
assign masked_data[out_route][v_chan][ModInRoute] = in_routed_data[in_route][v_chan];
end
end
assign in_ready[in_route][v_chan] =
|(masked_all_ready[in_route][v_chan] & route_mask[in_route][v_chan]);
end
end
flit_t [NumOutput-1:0][NumVirtChannels-1:0] out_data, out_buffered_data;
logic [NumOutput-1:0][NumVirtChannels-1:0] out_valid, out_ready;
logic [NumOutput-1:0][NumVirtChannels-1:0] out_buffered_valid, out_buffered_ready;
for (genvar out_route = 0; out_route < NumOutput; out_route++) begin : gen_output
// arbitrate input fifos per virtual channel
for (genvar v_chan = 0; v_chan < NumVirtChannels; v_chan++) begin : gen_virt_output
floo_wormhole_arbiter #(
.NumRoutes(NumInputLimited),
.flit_t (flit_t)
) i_wormhole_arbiter (
.clk_i,
.rst_ni,
.valid_i(masked_valid[out_route][v_chan]),
.ready_o(masked_ready[out_route][v_chan]),
.data_i (masked_data[out_route][v_chan]),
.valid_o(out_valid[out_route][v_chan]),
.ready_i(out_ready[out_route][v_chan]),
.data_o (out_data[out_route][v_chan])
);
if (OutputFifoDepth > 0) begin : gen_out_fifo
(* ungroup *)
stream_fifo_optimal_wrap #(
.Depth (OutputFifoDepth),
.type_t(flit_t)
) i_stream_fifo (
.clk_i (clk_i),
.rst_ni (rst_ni),
.testmode_i(test_enable_i),
.flush_i (1'b0),
.usage_o (),
.data_i (out_data[out_route][v_chan]),
.valid_i (out_valid[out_route][v_chan]),
.ready_o (out_ready[out_route][v_chan]),
.data_o (out_buffered_data[out_route][v_chan]),
.valid_o (out_buffered_valid[out_route][v_chan]),
.ready_i (out_buffered_ready[out_route][v_chan])
);
end else begin : gen_no_out_fifo
assign out_buffered_data[out_route][v_chan] = out_data[out_route][v_chan];
assign out_buffered_valid[out_route][v_chan] = out_valid[out_route][v_chan];
assign out_ready[out_route][v_chan] = out_buffered_ready[out_route][v_chan];
end
end
// Arbitrate virtual channels onto the physical channel
floo_vc_arbiter #(
.NumVirtChannels(NumVirtChannels),
.flit_t (flit_t),
.NumPhysChannels(NumPhysChannels)
) i_vc_arbiter (
.clk_i,
.rst_ni,
.valid_i(out_buffered_valid[out_route]),
.ready_o(out_buffered_ready[out_route]),
.data_i (out_buffered_data[out_route]),
.ready_i(ready_i[out_route]),
.valid_o(valid_o[out_route]),
.data_o (data_o[out_route])
);
end
for (genvar i = 0; i < NumInput; i++) begin : gen_input_assert
for (genvar v = 0; v < NumVirtChannels; v++) begin : gen_virt_assert
// Assert that the input data is stable when valid is asserted
// `ASSERT(StableDataIn, valid_i[i][v] && !ready_o[i][v] |=> $stable(data_i[i][v]))
// Assert that valid is stable when ready is not asserted
`ASSERT(StableValidIn, valid_i[i][v] && !ready_o[i][v] |=> $stable(valid_i[i][v]))
end
end
for (genvar o = 0; o < NumOutput; o++) begin : gen_output_assert
for (genvar v = 0; v < NumVirtChannels; v++) begin : gen_virt_assert
// Assert that the input data is stable when valid is asserted
// `ASSERT(StableDataOut, valid_o[o][v] && !ready_i[o][v] |=> $stable(data_o[o][v]))
// Assert that valid is stable when ready is not asserted
`ASSERT(StableValidOut, valid_o[o][v] && !ready_i[o][v] |=> $stable(valid_o[o][v]))
end
end
// If XYRouting optimization is enabled, assert that not Y->X routing occurs
if ((RouteAlgo == XYRouting) && XYRouteOpt) begin : gen_xy_opt_assert
for (genvar v = 0; v < NumVirtChannels; v++) begin : gen_virt
`ASSERT(XYDirectionNotAllowed,
!(in_valid[South][v] && route_mask[South][v][East]) &&
!(in_valid[South][v] && route_mask[South][v][West]) &&
!(in_valid[North][v] && route_mask[North][v][East]) &&
!(in_valid[North][v] && route_mask[North][v][West]))
end
end
endmodule