forked from lvwzhen/law-cn-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector-search.ts
195 lines (164 loc) · 5.45 KB
/
vector-search.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import type { NextRequest } from 'next/server'
import { createClient } from '@supabase/supabase-js'
import { codeBlock, oneLine } from 'common-tags'
import GPT3Tokenizer from 'gpt3-tokenizer'
import { CreateChatCompletionRequest } from 'openai'
import { ApplicationError, UserError } from '@/lib/errors'
// OpenAIApi does currently not work in Vercel Edge Functions as it uses Axios under the hood.
export const config = {
runtime: 'edge',
}
const openAiKey = process.env.OPENAI_KEY
const supabaseUrl = process.env.NEXT_PUBLIC_SUPABASE_URL
const supabaseServiceKey = process.env.SUPABASE_SERVICE_ROLE_KEY
export default async function handler(req: NextRequest) {
try {
if (!openAiKey) {
throw new ApplicationError('Missing environment variable OPENAI_KEY')
}
if (!supabaseUrl) {
throw new ApplicationError('Missing environment variable SUPABASE_URL')
}
if (!supabaseServiceKey) {
throw new ApplicationError('Missing environment variable SUPABASE_SERVICE_ROLE_KEY')
}
const requestData = await req.json()
if (!requestData) {
throw new UserError('Missing request data')
}
const { query } = requestData
if (!query) {
throw new UserError('Missing query in request data')
}
const supabaseClient = createClient(supabaseUrl, supabaseServiceKey)
// Moderate the content to comply with OpenAI T&C
const sanitizedQuery = query.trim()
const moderationResponse = await fetch('https://api.openai.com/v1/moderations', {
method: 'POST',
headers: {
Authorization: `Bearer ${openAiKey}`,
'Content-Type': 'application/json',
},
body: JSON.stringify({
input: sanitizedQuery,
}),
}).then((res) => res.json())
const [results] = moderationResponse.results
if (results.flagged) {
throw new UserError('Flagged content', {
flagged: true,
categories: results.categories,
})
}
const embeddingResponse = await fetch('https://api.openai.com/v1/embeddings', {
method: 'POST',
headers: {
Authorization: `Bearer ${openAiKey}`,
'Content-Type': 'application/json',
},
body: JSON.stringify({
model: 'text-embedding-ada-002',
input: sanitizedQuery.replaceAll('\n', ' '),
}),
})
if (embeddingResponse.status !== 200) {
throw new ApplicationError('Failed to create embedding for question', embeddingResponse)
}
const {
data: [{ embedding }],
} = await embeddingResponse.json()
const { error: matchError, data: pageSections } = await supabaseClient.rpc(
'match_page_sections',
{
embedding,
match_threshold: 0.78,
match_count: 10,
min_content_length: 50,
}
)
if (matchError) {
throw new ApplicationError('Failed to match page sections', matchError)
}
const tokenizer = new GPT3Tokenizer({ type: 'gpt3' })
let tokenCount = 0
let contextText = ''
for (let i = 0; i < pageSections.length; i++) {
const pageSection = pageSections[i]
const content = pageSection.content
const encoded = tokenizer.encode(content)
tokenCount += encoded.text.length
if (tokenCount >= 1500) {
break
}
contextText += `${content.trim()}\n---\n`
}
const prompt = codeBlock`
${oneLine`
You are a very enthusiastic legal representative who likes to help others!
Here are some relevant legal provisions. Give the following parts of the law
section of the document below, please use this information only to answer questions,
Please note that if there are updates to the legal provisions, please refer to the latest content.
Output in Chinese.
`}
Context sections:
${contextText}
Question:
${sanitizedQuery}
Answer:
`
const completionOptions: CreateChatCompletionRequest = {
model: "gpt-3.5-turbo",
messages: [{ role: "user", content: prompt }],
max_tokens: 256,
temperature: 0,
stream: true,
}
const response = await fetch('https://api.openai.com/v1/chat/completions', {
method: 'POST',
headers: {
Authorization: `Bearer ${openAiKey}`,
'Content-Type': 'application/json',
},
body: JSON.stringify(completionOptions),
})
if (!response.ok) {
const error = await response.json()
throw new ApplicationError('Failed to generate completion', error)
}
// Proxy the streamed SSE response from OpenAI
return new Response(response.body, {
headers: {
'Content-Type': 'text/event-stream',
},
})
} catch (err: unknown) {
if (err instanceof UserError) {
return new Response(
JSON.stringify({
error: err.message,
data: err.data,
}),
{
status: 400,
headers: { 'Content-Type': 'application/json' },
}
)
} else if (err instanceof ApplicationError) {
// Print out application errors with their additional data
console.error(`${err.message}: ${JSON.stringify(err.data)}`)
} else {
// Print out unexpected errors as is to help with debugging
console.error(err)
}
// TODO: include more response info in debug environments
return new Response(
JSON.stringify({
error: 'There was an error processing your request',
}),
{
status: 500,
headers: { 'Content-Type': 'application/json' },
}
)
}
}