forked from RandyGaul/cute_headers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcute_math.h
912 lines (761 loc) · 29.3 KB
/
cute_math.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
#if !defined(CUTE_MATH_H)
/*
------------------------------------------------------------------------------
Licensing information can be found at the end of the file.
------------------------------------------------------------------------------
cute_math.h - v1.02
To create implementation (the function definitions)
#define CUTE_MATH_IMPLEMENTATION
in *one* C/CPP file (translation unit) that includes this file
REVISION HISTORY
1.00 (12/21/2016) initial release
1.01 (10/05/2017) vfloat data type added, removed out-dated comments,
added compute_mouse_ray, added more m3 ops, added look_at
1.02 (06/14/2019) removed vfloat, consistent function naming, setup standard
calling convention, added implementation section, added
vector indexing operators, added axis/angle from m3
SUMMARY
A professional level implementation of SSE intrinsics.
*/
#include <stdint.h>
#include <math.h>
#include <xmmintrin.h>
#ifndef CUTE_MATH_ASSERT
# include <assert.h>
# define CUTE_MATH_ASSERT assert
#endif
#define CUTE_MATH_SHUFFLE(a, b, x, y, z) _mm_shuffle_ps(a, b, _MM_SHUFFLE(3, z, y, x))
#ifdef _MSC_VER
# define CUTE_MATH_CALL __vectorcall
#else
# define CUTE_MATH_CALL
#endif
#ifdef _WIN32
# define CUTE_MATH_INLINE __forceinline
# define CUTE_MATH_SELECTANY extern const __declspec(selectany)
# define CUTE_MATH_RESTRICT __restrict
#else
// Just assume a g++-like compiler.
# define CUTE_MATH_INLINE __attribute__((always_inline)) inline
# define CUTE_MATH_SELECTANY extern const __attribute__((weak))
# define CUTE_MATH_RESTRICT __restrict__
#endif
#define CUTE_MATH_PI 3.14159265358979323846f
#define CUTE_MATH_DEG2RAD(X) ((X) * CUTE_MATH_PI / 180.0f)
#define CUTE_MATH_RAD2DEG(X) ((X) * 180.0f / CUTE_MATH_PI)
#define CUTE_MATH_FLT_MAX 3.402823466e+38F
#define CUTE_MATH_FLT_EPSILON 1.19209290E-07f
namespace cute {
// -------------------------------------------------------------------------------------------------
// Scalar operations.
#ifndef CUTE_MATH_SCALAR_OPS
#define CUTE_MATH_SCALAR_OPS
CUTE_MATH_INLINE float min(float a, float b) { return a < b ? a : b; }
CUTE_MATH_INLINE float max(float a, float b) { return b < a ? a : b; }
CUTE_MATH_INLINE float clamp(float a, float lo, float hi) { return max(lo, min(a, hi)); }
CUTE_MATH_INLINE float sign(float a) { return a < 0 ? -1.0f : 1.0f; }
CUTE_MATH_INLINE float intersect(float da, float db) { return da / (da - db); }
CUTE_MATH_INLINE float invert_safe(float a) { return a != 0 ? 1.0f / a : 0; }
CUTE_MATH_INLINE int min(int a, int b) { return a < b ? a : b; }
CUTE_MATH_INLINE int max(int a, int b) { return b < a ? a : b; }
CUTE_MATH_INLINE int clamp(int a, int lo, int hi) { return max(lo, min(a, hi)); }
CUTE_MATH_INLINE int sign(int a) { return a < 0 ? -1 : 1; }
#endif // CUTE_MATH_SCALAR_OPS
// -------------------------------------------------------------------------------------------------
// 3-Vector definition.
struct v3
{
CUTE_MATH_INLINE v3() { }
CUTE_MATH_INLINE explicit v3(float x, float y, float z) { m = _mm_set_ps(0, z, y, x); }
CUTE_MATH_INLINE explicit v3(float a) { m = _mm_set_ps(0, a, a, a); }
CUTE_MATH_INLINE explicit v3(float *a) { m = _mm_set_ps(0, a[2], a[1], a[0]); }
CUTE_MATH_INLINE explicit v3(__m128 v) { m = v; }
CUTE_MATH_INLINE operator __m128() { return m; }
CUTE_MATH_INLINE operator const __m128() const { return m; }
CUTE_MATH_INLINE float operator[](int i)
{
switch (i)
{
case 0: return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(m, m, 0, 0, 0));
case 1: return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(m, m, 1, 1, 1));
case 2: return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(m, m, 2, 2, 2));
default: CUTE_MATH_ASSERT(0); return 0;
}
}
CUTE_MATH_INLINE float x() { return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(this->m, this->m, 0, 0, 0)); }
CUTE_MATH_INLINE float y() { return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(this->m, this->m, 1, 1, 1)); }
CUTE_MATH_INLINE float z() { return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(this->m, this->m, 2, 2, 2)); }
CUTE_MATH_INLINE v3 xyz() { return *this; }
CUTE_MATH_INLINE v3 xzy() { return v3(CUTE_MATH_SHUFFLE(this->m, this->m, 0, 2, 1)); }
CUTE_MATH_INLINE v3 yxz() { return v3(CUTE_MATH_SHUFFLE(this->m, this->m, 1, 0, 2)); }
CUTE_MATH_INLINE v3 yzx() { return v3(CUTE_MATH_SHUFFLE(this->m, this->m, 1, 2, 0)); }
CUTE_MATH_INLINE v3 zxy() { return v3(CUTE_MATH_SHUFFLE(this->m, this->m, 2, 0, 1)); }
CUTE_MATH_INLINE v3 zyx() { return v3(CUTE_MATH_SHUFFLE(this->m, this->m, 2, 1, 0)); }
__m128 m;
};
CUTE_MATH_INLINE float CUTE_MATH_CALL getx(v3 a) { return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(a, a, 0, 0, 0)); }
CUTE_MATH_INLINE float CUTE_MATH_CALL gety(v3 a) { return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(a, a, 1, 1, 1)); }
CUTE_MATH_INLINE float CUTE_MATH_CALL getz(v3 a) { return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(a, a, 2, 2, 2)); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL splatx(v3 a) { return v3(CUTE_MATH_SHUFFLE(a, a, 0, 0, 0)); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL splaty(v3 a) { return v3(CUTE_MATH_SHUFFLE(a, a, 1, 1, 1)); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL splatz(v3 a) { return v3(CUTE_MATH_SHUFFLE(a, a, 2, 2, 2)); }
// -------------------------------------------------------------------------------------------------
// Binary operators.
CUTE_MATH_INLINE v3 CUTE_MATH_CALL operator+(v3 a, v3 b) { return v3(_mm_add_ps(a, b)); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL operator-(v3 a, v3 b) { return v3(_mm_sub_ps(a, b)); }
CUTE_MATH_INLINE v3& CUTE_MATH_CALL operator+=(v3 &a, v3 b) { a = a + b; return a; }
CUTE_MATH_INLINE v3& CUTE_MATH_CALL operator-=(v3 &a, v3 b) { a = a - b; return a; }
// SIMD comparisons return a 4-lane vector. To keep things simple `bool3` is merely a descriptive alias
// for `v3`, and is not its own type.
using bool3 = v3;
// Generally comparisons are followed up with a mask(v3) or any(v3) call.
CUTE_MATH_INLINE bool3 CUTE_MATH_CALL operator==(v3 a, v3 b) { return bool3(_mm_cmpeq_ps(a, b)); }
CUTE_MATH_INLINE bool3 CUTE_MATH_CALL operator!=(v3 a, v3 b) { return bool3(_mm_cmpneq_ps(a, b)); }
CUTE_MATH_INLINE bool3 CUTE_MATH_CALL operator<(v3 a, v3 b) { return bool3(_mm_cmplt_ps(a, b)); }
CUTE_MATH_INLINE bool3 CUTE_MATH_CALL operator>(v3 a, v3 b) { return bool3(_mm_cmpgt_ps(a, b)); }
CUTE_MATH_INLINE bool3 CUTE_MATH_CALL operator<=(v3 a, v3 b) { return bool3(_mm_cmple_ps(a, b)); }
CUTE_MATH_INLINE bool3 CUTE_MATH_CALL operator>=(v3 a, v3 b) { return bool3(_mm_cmpge_ps(a, b)); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL operator-(v3 a) { return v3(_mm_setzero_ps()) - a; }
CUTE_MATH_INLINE unsigned CUTE_MATH_CALL mask(v3 a) { return _mm_movemask_ps(a) & 7; }
CUTE_MATH_INLINE bool CUTE_MATH_CALL any(v3 a) { return mask(a) != 0; }
CUTE_MATH_INLINE bool CUTE_MATH_CALL all(v3 a) { return mask(a) == 7; }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL setx(v3 a, float x)
{
v3 t0 = v3(_mm_set_ss(x));
return v3(_mm_move_ss(a, t0));
}
CUTE_MATH_INLINE v3 CUTE_MATH_CALL sety(v3 a, float y)
{
v3 t0 = v3(CUTE_MATH_SHUFFLE(a, a, 1, 0, 2));
v3 t1 = v3(_mm_set_ss(y));
v3 t2 = v3(_mm_move_ss(t0, t1));
return v3(CUTE_MATH_SHUFFLE(t2, t2, 1, 0, 2));
}
CUTE_MATH_INLINE v3 CUTE_MATH_CALL setz(v3 a, float z)
{
v3 t0 = v3(CUTE_MATH_SHUFFLE(a, a, 2, 1, 0));
v3 t1 = v3(_mm_set_ss(z));
v3 t2 = v3(_mm_move_ss(t0, t1));
return v3(CUTE_MATH_SHUFFLE(t2, t2, 2, 1, 0));
}
CUTE_MATH_INLINE v3 CUTE_MATH_CALL operator*(v3 a, v3 b) { return v3(_mm_mul_ps(a, b)); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL operator/(v3 a, v3 b) { return v3(_mm_div_ps(a, b)); }
CUTE_MATH_INLINE v3& CUTE_MATH_CALL operator*=(v3& a, v3 b) { a = a * b; return a; }
CUTE_MATH_INLINE v3& CUTE_MATH_CALL operator/=(v3& a, v3 b) { a = a / b; return a; }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL operator*(v3 a, float b) { return v3(_mm_mul_ps(a, v3(b))); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL operator/(v3 a, float b) { return v3(_mm_div_ps(a, v3(b))); }
CUTE_MATH_INLINE v3& CUTE_MATH_CALL operator*=(v3& a, float b) { a = a * b; return a; }
CUTE_MATH_INLINE v3& CUTE_MATH_CALL operator/=(v3& a, float b) { a = a / b; return a; }
// -------------------------------------------------------------------------------------------------
// Helpers for static data.
struct cute_math_const_integer
{
union { uint32_t i[4]; __m128 m; };
CUTE_MATH_INLINE operator v3() const { return v3(m); }
CUTE_MATH_INLINE operator __m128() const { return m; }
};
struct cute_math_const_float
{
union { float f[4]; __m128 m; };
CUTE_MATH_INLINE operator v3() const { return v3(m); }
CUTE_MATH_INLINE operator __m128() const { return m; }
};
CUTE_MATH_SELECTANY cute_math_const_integer cute_math_mask_sign = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 };
CUTE_MATH_SELECTANY cute_math_const_integer cute_math_mask_all_bits = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 };
CUTE_MATH_SELECTANY cute_math_const_float cute_math_mask_basis = { 0.57735027f, 0.57735027f, 0.57735027f };
// -------------------------------------------------------------------------------------------------
// Vector operations.
// `f` must be 16 byte aligned.
CUTE_MATH_INLINE v3 CUTE_MATH_CALL load(float* f) { return v3(_mm_load_ps(f)); }
CUTE_MATH_INLINE void CUTE_MATH_CALL store(v3 v, float* f) { _mm_store_ps(f, v); }
CUTE_MATH_INLINE float CUTE_MATH_CALL dot(v3 a, v3 b)
{
v3 t0 = v3(_mm_mul_ps(a, b));
v3 t1 = v3(CUTE_MATH_SHUFFLE(t0, t0, 1, 0, 0));
v3 t2 = v3(_mm_add_ss(t0, t1));
v3 t3 = v3(CUTE_MATH_SHUFFLE(t2, t2, 2, 0, 0));
v3 t4 = v3(_mm_add_ss(t2, t3));
return getx(t4);
}
CUTE_MATH_INLINE v3 CUTE_MATH_CALL cross(v3 a, v3 b)
{
v3 t0 = v3(CUTE_MATH_SHUFFLE(a, a, 1, 2, 0));
v3 t1 = v3(CUTE_MATH_SHUFFLE(b, b, 2, 0, 1));
v3 t2 = v3(_mm_mul_ps(t0, t1));
t0 = v3(CUTE_MATH_SHUFFLE(t0, t0, 1, 2, 0));
t1 = v3(CUTE_MATH_SHUFFLE(t1, t1, 2, 0, 1));
t0 = v3(_mm_mul_ps(t0, t1));
return v3(_mm_sub_ps(t2, t0));
}
CUTE_MATH_INLINE float CUTE_MATH_CALL length_sq(v3 a) { return dot(a, a); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL sqrt(v3 a) { return v3(_mm_sqrt_ps(a)); }
CUTE_MATH_INLINE float CUTE_MATH_CALL length(v3 a) { return sqrtf(dot(a, a)); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL abs(v3 a) { return v3(_mm_andnot_ps(cute_math_mask_sign, a)); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL min(v3 a, v3 b) { return v3(_mm_min_ps(a, b)); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL max(v3 a, v3 b) { return v3(_mm_max_ps(a, b)); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL select(v3 a, v3 b, v3 mask) { return v3(_mm_xor_ps(a, _mm_and_ps(mask, _mm_xor_ps(b, a)))); }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL lerp(v3 a, v3 b, float t) { return a + (b - a) * t; }
CUTE_MATH_INLINE float CUTE_MATH_CALL hmin(v3 a)
{
v3 t0 = v3(CUTE_MATH_SHUFFLE(a, a, 1, 0, 2));
a = min(a, t0);
v3 t1 = v3(CUTE_MATH_SHUFFLE(a, a, 2, 0, 1));
return getx(min(a, t1));
}
CUTE_MATH_INLINE float CUTE_MATH_CALL hmax(v3 a)
{
v3 t0 = v3(CUTE_MATH_SHUFFLE(a, a, 1, 0, 2));
a = max(a, t0);
v3 t1 = v3(CUTE_MATH_SHUFFLE(a, a, 2, 0, 1));
return getx(max(a, t1));
}
CUTE_MATH_INLINE v3 CUTE_MATH_CALL norm(v3 a)
{
float t0 = dot(a, a);
float t1 = sqrtf(t0);
v3 t2 = v3(_mm_div_ps(a, v3(t1)));
return v3(_mm_and_ps(t2, cute_math_mask_all_bits));
}
// Optimize me.
CUTE_MATH_INLINE v3 CUTE_MATH_CALL safe_norm(v3 a)
{
float t0 = dot(a, a);
if (t0 == 0) {
return v3(0, 0, 0);
} else {
float t1 = sqrtf(t0);
v3 t2 = v3(_mm_div_ps(a, v3(t1)));
return v3(_mm_and_ps(t2, cute_math_mask_all_bits));
}
}
CUTE_MATH_INLINE v3 CUTE_MATH_CALL invert(v3 a)
{
return v3(_mm_div_ps(v3(1.0f), a));
}
// Optimize me.
CUTE_MATH_INLINE v3 CUTE_MATH_CALL invert_safe(v3 a)
{
float x = a.x();
float y = a.y();
float z = a.z();
return v3(
x == 0 ? 0 : 1.0f / x,
y == 0 ? 0 : 1.0f / y,
z == 0 ? 0 : 1.0f / z
);
}
CUTE_MATH_INLINE v3 CUTE_MATH_CALL clamp(v3 a, v3 vmin, v3 vmax)
{
v3 t0 = v3(_mm_max_ps(vmin, a));
return v3(_mm_min_ps(t0, vmax));
}
// Sets up a mask of { x ? ~0 : 0, y ? ~0 : 0, z ? ~0 : 0 }, where x, y and z should be 0 or 1.
CUTE_MATH_INLINE v3 CUTE_MATH_CALL mask(int x, int y, int z)
{
cute_math_const_integer c;
unsigned elements[] = { 0x00000000, 0xFFFFFFFF };
CUTE_MATH_ASSERT(x < 2 && x >= 0);
CUTE_MATH_ASSERT(y < 2 && y >= 0);
CUTE_MATH_ASSERT(z < 2 && z >= 0);
c.i[0] = elements[x];
c.i[1] = elements[y];
c.i[2] = elements[z];
c.i[3] = elements[0];
return c;
}
// `da` and `db` (standing for dot a and dot b) should be distances to plane, i.e. `halfspace::distance`.
CUTE_MATH_INLINE v3 CUTE_MATH_CALL intersect(v3 a, v3 b, float da, float db)
{
return a + (b - a) * (da / (da - db));
}
// Carefully choose `tolerance`, see: http://www.randygaul.net/2014/11/07/robust-parallel-vector-test/
CUTE_MATH_INLINE bool CUTE_MATH_CALL parallel(v3 a, v3 b, float tolerance)
{
float k = length(a) / length(b);
v3 bk = b * k;
if (all(abs(a - bk) < v3(tolerance))) return 1;
return 0;
}
// -------------------------------------------------------------------------------------------------
// Matrix operations.
struct m3
{
CUTE_MATH_INLINE v3 operator[](int i)
{
switch (i)
{
case 0: return x;
case 1: return y;
case 2: return z;
default: CUTE_MATH_ASSERT(0); return x;
}
}
v3 x;
v3 y;
v3 z;
};
CUTE_MATH_INLINE m3 CUTE_MATH_CALL rows(v3 x, v3 y, v3 z)
{
m3 m;
m.x = x;
m.y = y;
m.z = z;
return m;
}
CUTE_MATH_INLINE m3 CUTE_MATH_CALL operator-(m3 a, m3 b)
{
m3 c;
c.x = a.x - b.x;
c.y = a.y - b.y;
c.z = a.z - b.z;
return c;
}
CUTE_MATH_INLINE m3 CUTE_MATH_CALL operator+(m3 a, m3 b)
{
m3 c;
c.x = a.x + b.x;
c.y = a.y + b.y;
c.z = a.z + b.z;
return c;
}
CUTE_MATH_INLINE m3& CUTE_MATH_CALL operator+=(m3& a, m3 b) { a = a + b; return a; }
CUTE_MATH_INLINE m3& CUTE_MATH_CALL operator-=(m3& a, m3 b) { a = a - b; return a; }
CUTE_MATH_INLINE m3 CUTE_MATH_CALL operator*(float a, m3 b)
{
m3 c;
c.x = b.x * a;
c.y = b.y * a;
c.z = b.z * a;
return c;
}
CUTE_MATH_INLINE m3 CUTE_MATH_CALL m3_from_quat(float x, float y, float z, float w)
{
float x2 = x + x;
float y2 = y + y;
float z2 = z + z;
float xx = x * x2;
float xy = x * y2;
float xz = x * z2;
float xw = w * x2;
float yy = y * y2;
float yz = y * z2;
float yw = w * y2;
float zz = z * z2;
float zw = w * z2;
return rows(
v3(1.0f - yy - zz, xy + zw, xz - yw),
v3(xy - zw, 1.0f - xx - zz, yz + xw),
v3(xz + yw, yz - xw, 1.0f - xx - yy)
);
}
CUTE_MATH_INLINE m3 CUTE_MATH_CALL m3_from_axis_angle(v3 axis, float angle)
{
float s = sinf(angle * 0.5f);
float c = cosf(angle * 0.5f);
float x = getx(axis) * s;
float y = gety(axis) * s;
float z = getz(axis) * s;
float w = c;
return m3_from_quat(x, y, z, w);
}
// Does not preserve 0 in w to get rid of extra shuffles.
// Oh well. Anyone have a better idea?
CUTE_MATH_INLINE m3 CUTE_MATH_CALL transpose(m3 a)
{
v3 t0 = v3(_mm_shuffle_ps(a.x, a.y, _MM_SHUFFLE(1, 0, 1, 0)));
v3 t1 = v3(_mm_shuffle_ps(a.x, a.y, _MM_SHUFFLE(2, 2, 2, 2)));
v3 x = v3(_mm_shuffle_ps(t0, a.z, _MM_SHUFFLE(0, 0, 2, 0)));
v3 y = v3(_mm_shuffle_ps(t0, a.z, _MM_SHUFFLE(0, 1, 3, 1)));
v3 z = v3(_mm_shuffle_ps(t1, a.z, _MM_SHUFFLE(0, 2, 2, 0)));
a.x = x;
a.y = y;
a.z = z;
return a;
}
// a * b
CUTE_MATH_INLINE v3 CUTE_MATH_CALL mul(m3 a, v3 b)
{
v3 x = splatx(b);
v3 y = splaty(b);
v3 z = splatz(b);
x = v3(_mm_mul_ps(x, a.x));
y = v3(_mm_mul_ps(y, a.y));
z = v3(_mm_mul_ps(z, a.z));
v3 t0 = v3(_mm_add_ps(x, y));
return v3(_mm_add_ps(t0, z));
}
// a^T * b
CUTE_MATH_INLINE v3 CUTE_MATH_CALL mul_transpose(m3 a, v3 b) { return mul(transpose(a), b); }
// a * b
CUTE_MATH_INLINE m3 CUTE_MATH_CALL mul(m3 a, m3 b)
{
v3 x = mul(a, b.x);
v3 y = mul(a, b.y);
v3 z = mul(a, b.z);
return rows(x, y, z);
}
// a^T * b
CUTE_MATH_INLINE m3 CUTE_MATH_CALL mul_transpose(m3 a, m3 b) { return mul(transpose(a), b); }
// http://box2d.org/2014/02/computing-a-basis/
CUTE_MATH_INLINE m3 CUTE_MATH_CALL basis(v3 a)
{
// Suppose vector a has all equal components and is a unit vector: a = (s, s, s)
// Then 3*s*s = 1, s = sqrt(1/3) = 0.57735027. This means that at least one component
// of a unit vector must be greater or equal to 0.57735027.
v3 neg_a = -a;
v3 t0 = v3(CUTE_MATH_SHUFFLE(a, neg_a, 1, 1, 0));
v3 b0 = v3(CUTE_MATH_SHUFFLE(t0, t0, 0, 2, 3));
t0 = v3(CUTE_MATH_SHUFFLE(a, neg_a, 2, 2, 1));
v3 b1 = v3(CUTE_MATH_SHUFFLE(t0, t0, 3, 1, 2));
v3 mask = v3(_mm_cmpge_ps(cute_math_mask_basis, abs(a)));
mask = splatx(mask);
v3 b = select(b0, b1, mask);
b = v3(norm(b).m);
v3 c = cross(a, b);
return rows(a, b, c);
}
CUTE_MATH_INLINE m3 CUTE_MATH_CALL outer_product(v3 u, v3 v)
{
v3 a = v * getx(u);
v3 b = v * gety(u);
v3 c = v * getz(u);
return rows(a, b, c);
}
CUTE_MATH_INLINE m3 CUTE_MATH_CALL m3_from_x_axis(float radians)
{
float s = sinf(radians);
float c = cosf(radians);
return rows(
v3(1, 0, 0),
v3(0, c, -s),
v3(0, s, c)
);
}
CUTE_MATH_INLINE m3 CUTE_MATH_CALL m3_from_y_axis(float radians)
{
float s = sinf(radians);
float c = cosf(radians);
return rows(
v3( c, 0, s),
v3( 0, 1, 0),
v3(-s, 0, c)
);
}
CUTE_MATH_INLINE m3 CUTE_MATH_CALL m3_from_z_axis(float radians)
{
float s = sinf(radians);
float c = cosf(radians);
return rows(
v3(c, -s, 0),
v3(s, c, 0),
v3(0, 0, 1)
);
}
CUTE_MATH_INLINE m3 CUTE_MATH_CALL m3_from_euler_xyz(float x_radians, float y_radians, float z_radians)
{
m3 x = m3_from_x_axis(x_radians);
m3 y = m3_from_y_axis(y_radians);
m3 z = m3_from_z_axis(z_radians);
return mul(mul(x, y), z);
}
CUTE_MATH_INLINE m3 CUTE_MATH_CALL m3_from_euler_degrees_xyz(float x_degrees, float y_degrees, float z_degrees)
{
return m3_from_euler_xyz(CUTE_MATH_DEG2RAD(x_degrees), CUTE_MATH_DEG2RAD(y_degrees), CUTE_MATH_DEG2RAD(z_degrees));
}
// -------------------------------------------------------------------------------------------------
// Transform operations.
struct transform
{
v3 p; // position
m3 r; // rotation
};
CUTE_MATH_INLINE v3 CUTE_MATH_CALL mul(transform tx, v3 a) { return mul(tx.r, a) + tx.p; }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL mul_transpose(transform tx, v3 a) { return mul(tx.r, a - tx.p); }
CUTE_MATH_INLINE transform CUTE_MATH_CALL mul(transform a, transform b)
{
transform c;
c.p = mul(a.r, b.p) + a.p;
c.r = mul(a.r, b.r);
return c;
}
CUTE_MATH_INLINE transform CUTE_MATH_CALL mul_transpose(transform a, transform b)
{
transform c;
c.p = mul_transpose(a.r, b.p - a.p);
c.r = mul_transpose(a.r, b.r);
return c;
}
struct halfspace
{
v3 n;
float d;
};
CUTE_MATH_INLINE v3 CUTE_MATH_CALL origin(halfspace h) { return h.n * h.d; }
CUTE_MATH_INLINE float CUTE_MATH_CALL distance(halfspace h, v3 p) { return dot(h.n, p) - h.d; }
CUTE_MATH_INLINE v3 CUTE_MATH_CALL projected(halfspace h, v3 p) { return p - h.n * distance(h, p); }
CUTE_MATH_INLINE halfspace CUTE_MATH_CALL mul(transform a, halfspace b)
{
v3 o = origin(b);
o = mul(a, o);
v3 normal = mul(a.r, b.n);
halfspace c;
c.n = normal;
c.d = dot(o, normal);
return c;
}
CUTE_MATH_INLINE halfspace CUTE_MATH_CALL mul_transpose(transform a, halfspace b)
{
v3 o = origin(b);
o = mul_transpose(a, o);
v3 normal = mul_transpose(a.r, b.n);
halfspace c;
c.n = normal;
c.d = dot(o, normal);
return c;
}
// -------------------------------------------------------------------------------------------------
// Quaternion operations.
struct q4
{
q4() { }
CUTE_MATH_INLINE explicit q4(v3 vector_part, float scalar_part) { m = _mm_set_ps(scalar_part, getz(vector_part), gety(vector_part), getx(vector_part)); }
CUTE_MATH_INLINE explicit q4(float x, float y, float z, float w) { m = _mm_set_ps(w, z, y, x); }
CUTE_MATH_INLINE operator __m128() { return m; }
CUTE_MATH_INLINE operator __m128() const { return m; }
__m128 m;
};
CUTE_MATH_INLINE q4 CUTE_MATH_CALL q4_from_axis_angle(v3 axis_normalized, float angle)
{
float s = sinf(angle * 0.5f);
float c = cosf(angle * 0.5f);
return q4(axis_normalized * s, c);
}
CUTE_MATH_INLINE float CUTE_MATH_CALL getx(q4 a) { return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(a, a, 0, 0, 0)); }
CUTE_MATH_INLINE float CUTE_MATH_CALL gety(q4 a) { return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(a, a, 1, 1, 1)); }
CUTE_MATH_INLINE float CUTE_MATH_CALL getz(q4 a) { return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(a, a, 2, 2, 2)); }
CUTE_MATH_INLINE float CUTE_MATH_CALL getw(q4 a) { return _mm_cvtss_f32(CUTE_MATH_SHUFFLE(a, a, 3, 3, 3)); }
// Optimize me.
CUTE_MATH_INLINE q4 CUTE_MATH_CALL norm(q4 q)
{
float x = getx(q);
float y = gety(q);
float z = getz(q);
float w = getw(q);
float d = w * w + x * x + y * y + z * z;
if(d == 0) w = 1.0f;
d = 1.0f / sqrtf(d);
if (d > 1.0e-8f) {
x *= d;
y *= d;
z *= d;
w *= d;
}
return q4(x, y, z, w);
}
// Optimize me.
CUTE_MATH_INLINE q4 CUTE_MATH_CALL operator*(q4 a, q4 b)
{
return q4(
getw(a) * getx(b) + getx(a) * getw(b) + gety(a) * getz(b) - getz(a) * gety(b),
getw(a) * gety(b) + gety(a) * getw(b) + getz(a) * getx(b) - getx(a) * getz(b),
getw(a) * getz(b) + getz(a) * getw(b) + getx(a) * gety(b) - gety(a) * getx(b),
getw(a) * getw(b) - getx(a) * getx(b) - gety(a) * gety(b) - getz(a) * getz(b)
);
}
// Optimize me.
CUTE_MATH_INLINE q4 CUTE_MATH_CALL integrate(q4 q, v3 w, float h)
{
q4 wq(getx(w) * h, gety(w) * h, getz(w) * h, 0.0f);
wq = wq * q;
q4 q0 = q4(
getx(q) + getx(wq) * 0.5f,
gety(q) + gety(wq) * 0.5f,
getz(q) + getz(wq) * 0.5f,
getw(q) + getw(wq) * 0.5f
);
return norm(q0);
}
// Optimize me.
CUTE_MATH_INLINE m3 CUTE_MATH_CALL m3_from_q4(q4 q)
{
return m3_from_quat(getx(q), gety(q), getz(q), getw(q));
}
CUTE_MATH_INLINE float CUTE_MATH_CALL trace(m3 m)
{
return getx(m.x) + gety(m.y) + getz(m.z);
}
// -------------------------------------------------------------------------------------------------
// Globals.
CUTE_MATH_SELECTANY m3 identity_m3 = rows(v3(1.0f, 0.0f, 0.0f), v3(0.0f, 1.0f, 0.0f), v3(0.0f, 0.0f, 1.0f));
CUTE_MATH_SELECTANY m3 zero_m3 = rows(v3(0.0f, 0.0f, 0.0f), v3(0.0f, 0.0f, 0.0f), v3(0.0f, 0.0f, 0.0f));
CUTE_MATH_SELECTANY v3 zero_v3 = v3(0.0f, 0.0f, 0.0f);
CUTE_MATH_SELECTANY q4 identity_q4 = q4(0.0f, 0.0f, 0.0f, 1.0f);
CUTE_MATH_SELECTANY transform identity_transform = { zero_v3, identity_m3 };
// -------------------------------------------------------------------------------------------------
// Larger utility functions, defined in the `CUTE_MATH_IMPLEMENTATION` section.
void CUTE_MATH_CALL look_at(float* world_to_cam, v3 eye, v3 target, v3 up, float* cam_to_world = NULL);
void CUTE_MATH_CALL mul_vector4_by_matrix4x4(float* a_matrix4x4, float* b_vector4, float* out_vector);
void CUTE_MATH_CALL mul_matrix4x4_by_matrix4x4(float* a, float* b, float* out);
void CUTE_MATH_CALL compute_mouse_ray(float mouse_x, float mouse_y, float fov, float viewport_w, float viewport_h, float* cam_inv, float near_plane_dist, v3* mouse_pos, v3* mouse_dir);
void CUTE_MATH_CALL axis_angle_from_m3(m3 m, v3* axis, float* angle_radians);
} // namespace cute
#define CUTE_MATH_H
#endif
#ifdef CUTE_MATH_IMPLEMENTATION
#ifndef CUTE_MATH_IMPLEMENTATION_ONCE
#define CUTE_MATH_IMPLEMENTATION_ONCE
namespace cute {
void CUTE_MATH_CALL look_at(float* world_to_cam, v3 eye, v3 target, v3 up, float* cam_to_world)
{
v3 front = norm(target - eye);
v3 side = norm(cross(front, up));
v3 top = norm(cross(side, front));
world_to_cam[0] = getx(side);
world_to_cam[1] = getx(top);
world_to_cam[2] = -getx(front);
world_to_cam[3] = 0;
world_to_cam[4] = gety(side);
world_to_cam[5] = gety(top);
world_to_cam[6] = -gety(front);
world_to_cam[7] = 0;
world_to_cam[8] = getz(side);
world_to_cam[9] = getz(top);
world_to_cam[10] = -getz(front);
world_to_cam[11] = 0;
v3 x = v3(world_to_cam[0], world_to_cam[4], world_to_cam[8]);
v3 y = v3(world_to_cam[1], world_to_cam[5], world_to_cam[9]);
v3 z = v3(world_to_cam[2], world_to_cam[6], world_to_cam[10]);
world_to_cam[12] = -dot(x, eye);
world_to_cam[13] = -dot(y, eye);
world_to_cam[14] = -dot(z, eye);
world_to_cam[15] = 1.0f;
if (cam_to_world) {
cam_to_world[0] = getx(side);
cam_to_world[1] = gety(side);
cam_to_world[2] = getz(side);
cam_to_world[3] = 0;
cam_to_world[4] = getx(top);
cam_to_world[5] = gety(top);
cam_to_world[6] = getz(top);
cam_to_world[7] = 0;
cam_to_world[8] = -getx(front);
cam_to_world[9] = -gety(front);
cam_to_world[10] = -getz(front);
cam_to_world[11] = 0;
cam_to_world[12] = getx(eye);
cam_to_world[13] = gety(eye);
cam_to_world[14] = getz(eye);
cam_to_world[15] = 1.0f;
}
}
void CUTE_MATH_CALL mul_vector4_by_matrix4x4(float* a_matrix4x4, float* b_vector4, float* out_vector)
{
float result[4];
result[0] = a_matrix4x4[0] * b_vector4[0] + a_matrix4x4[4] * b_vector4[1] + a_matrix4x4[8] * b_vector4[2] + a_matrix4x4[12] * b_vector4[3];
result[1] = a_matrix4x4[1] * b_vector4[0] + a_matrix4x4[5] * b_vector4[1] + a_matrix4x4[9] * b_vector4[2] + a_matrix4x4[13] * b_vector4[3];
result[2] = a_matrix4x4[2] * b_vector4[0] + a_matrix4x4[6] * b_vector4[1] + a_matrix4x4[10] * b_vector4[2] + a_matrix4x4[14] * b_vector4[3];
result[3] = a_matrix4x4[3] * b_vector4[0] + a_matrix4x4[7] * b_vector4[1] + a_matrix4x4[11] * b_vector4[2] + a_matrix4x4[15] * b_vector4[3];
out_vector[0] = result[0];
out_vector[1] = result[1];
out_vector[2] = result[2];
out_vector[3] = result[3];
}
void CUTE_MATH_CALL mul_matrix4x4_by_matrix4x4(float* a, float* b, float* out)
{
float result[16];
mul_vector4_by_matrix4x4(a, b, result);
mul_vector4_by_matrix4x4(a, b + 4, result + 4);
mul_vector4_by_matrix4x4(a, b + 8, result + 8);
mul_vector4_by_matrix4x4(a, b + 12, result + 12);
for (int i = 0; i < 16; ++i) out[i] = result[i];
}
void CUTE_MATH_CALL compute_mouse_ray(float mouse_x, float mouse_y, float fov, float viewport_w, float viewport_h, float* cam_inv, float near_plane_dist, v3* mouse_pos, v3* mouse_dir)
{
float aspect = (float)viewport_w / (float)viewport_h;
float px = 2.0f * aspect * mouse_x / viewport_w - aspect;
float py = -2.0f * mouse_y / viewport_h + 1.0f;
float pz = -1.0f / tanf(fov / 2.0f);
v3 point_in_view_space(px, py, pz);
v3 cam_pos(cam_inv[12], cam_inv[13], cam_inv[14]);
float pf[4] = { getx(point_in_view_space), gety(point_in_view_space), getz(point_in_view_space), 1.0f };
mul_vector4_by_matrix4x4(cam_inv, pf, pf);
v3 point_on_clipping_plane(pf[0] , pf[1], pf[2]);
v3 dir_in_world_space = point_on_clipping_plane - cam_pos;
v3 dir = norm(dir_in_world_space);
v3 cam_forward(cam_inv[8], cam_inv[9], cam_inv[10]);
*mouse_dir = dir;
*mouse_pos = cam_pos + dir * dot(dir, cam_forward) * near_plane_dist;
}
void CUTE_MATH_CALL axis_angle_from_m3(m3 m, v3* axis, float* angle_radians)
{
const float k_tol = 1.0e-8f;
float c = 0.5f * (trace(m) - 1.0f);
float angle = acosf(c);
*angle_radians = angle;
bool angle_near_zero = fabsf(angle) < k_tol;
bool angle_not_near_pi = angle < CUTE_MATH_PI - k_tol;
if (angle_near_zero) {
// When angle is zero the axis can be anything. X axis is good.
*axis = v3(1, 0, 0);
} else if (angle_not_near_pi) {
// Standard case with no singularity.
v3 n = v3(m[1][2] - m[2][1], m[2][0] - m[0][2], m[0][1] - m[1][0]);
*axis = norm(n);
} else {
// Angle is near 180-degrees.
int i = 0;
if (m[1][1] > m[0][0]) i = 1;
if (m[2][2] > m[i][i]) i = 2;
int j = (i + 1) % 3;
int k = (j + 1) % 3;
float s = sqrtf(m[i][i] - m[j][j] - m[k][k] + 1.0f);
float inv_s = s != 0 ? 1.0f / s : 0;
float v[3];
v[i] = 0.5f * s;
v[j] = m[j][i] * inv_s;
v[k] = m[i][k] * inv_s;
*axis = v3(v[0], v[1], v[2]);
}
}
} // namespace cute
#endif // CUTE_MATH_IMPLEMENTATION_ONCE
#endif // CUTE_MATH_IMPLEMENTATION
/*
------------------------------------------------------------------------------
This software is available under 2 licenses - you may choose the one you like.
------------------------------------------------------------------------------
ALTERNATIVE A - zlib license
Copyright (c) 2019 Randy Gaul http://www.randygaul.net
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from
the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not
be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/