Skip to content

Mandarin State-of-the-art Automatic Speech Recognition in Tensorflow 2

License

Notifications You must be signed in to change notification settings

phecda-xu/TensorflowASR

Repository files navigation

TensorflowASR

python tensorflow

集成了Tensorflow 2版本的端到端语音识别模型

目前集成了中文的CTC\Transducer\LAS 三种结构

当前还在开发阶段

欢迎使用并反馈bug

English|中文版

Mel Layer

参照librosa库,用TF2实现了语音频谱特征提取的层,这样在跨平台部署时会更加容易。

使用:

  • am_data.yml
    use_mel_layer: True
    mel_layer_type: Melspectrogram #Spectrogram
    trainable_kernel: True #support train model,not recommend
    

Cpp Inference

C++的demo已经提供。

测试于TensorflowC 2.3.0版本

详细见目录 cppinference

Pretrained Model

所有结果测试于 AISHELL TEST 数据集.

AM:

Model Name Mel layer(USE/TRAIN) link code train data txt CER phoneme CER Model Size
MultiTask False/False pan.baidu.com/s/1nDDqcJXBbpFJASYz_U8FfA ucqf aishell2(10 epochs) 10.4 8.3 109M
ConformerRNNT(S) True/True pan.baidu.com/s/1bdqeLDBHQ_XmgNuUr6mflw fqvf aishell2(10 epochs) - 9.7 61M
ConformerCTC(S) True/True pan.baidu.com/s/1sh2bUm1HciE6Fu7PHUfRGA jntv aishell2(10 epochs) - 9.9 46M
ConformerCTC2(S) True/False pan.baidu.com/s/12hsjq-lWudeaQzQomV-PDw ifm6 aishell2(10 epochs) - 8.1 46M
ConformerCTC3(S) False/False pan.baidu.com/s/1zKDgMHfpOhw10pOSWmtLrQ gmr5 aishell2(10 epochs) - 7.0 46M

LM:

Model Name O2O(Decoder) link code train data txt cer model size params size
TransformerO2OE True(False) pan.baidu.com/s/1lyqHGacYd7arBrJtlTFdTw kw0y aishell2 text(98k steps) 4.4 200M 52M
TransformerO2OED True(True) pan.baidu.com/s/1acvCRpS2j16dxLoCyToB6A jrfi aishell2 text(10k steps) 6.2 217M 61M
Transformer True(True) pan.baidu.com/s/1W3HLNNGL3ceJfoxb0P7RMw qeet aishell2 text(10k steps) 8.6 233M 61M
TransformerPunc False(True) pan.baidu.com/s/1umwMP2nIzr25NnvG3LTRvw 7ctd 翻译文本 - 76M 30M

Speed:

AM 速度测试(基于Python), 一条约4.1秒的音频 CPU响应速度为:

CTC Transducer LAS
150ms 350ms 280ms

LM 速度测试(基于Python),12个字的响应速度 CPU:

O2O-Encoder-Decoder O2O-Encoder Encoder-Decoder
100ms 20ms 300ms

快速使用:

下载预训练模型,修改 am_data.yml/lm_data.yml 里的目录参数(running_config下的outdir参数),并在修改后的目录中添加 checkpoints 目录,

将model_xx.h5(xx为数字)文件放入对应的checkpoints目录中,

修改run-test.py中的读取的config文件(am_data.yml,model.yml)路径,运行run-test.py即可。

Community

欢迎加入,讨论和分享问题。

What's New?

最新更新

  • Change RNNT predict to support C++
  • Add C++ Inference Demo,detail in cppinference

Supported Structure

  • CTC
  • Transducer
  • LAS
  • MultiTaskCTC

Supported Models

  • Conformer
  • ESPNet:Efficient Spatial Pyramid of Dilated Convolutions
  • DeepSpeech2
  • Transformer 拼音->汉字
    • O2O-Encoder-Decoder 完整的transformer结构,拼音与汉字一一对应的形式 ,e.g.: pin4 yin4-> 拼音
    • O2O-Encoder 不含decoder部分的结构
    • Encoder-Decoder 经典的transformer结构

Requirements

  • Python 3.6+
  • Tensorflow 2.2+: pip install tensorflow
  • librosa
  • pypinyin if you need use the default phoneme
  • keras-bert
  • addons For LAS structure,pip install tensorflow-addons
  • tqdm
  • jieba
  • wrap_rnnt_loss not essential,provide in ./externals
  • wrap_ctc_decoders not essential,provide in ./externals

Usage

  1. 准备train_list.

    am_train_list 格式,其中'\t'为tap:

    file_path1 \t text1
    file_path2 \t text2
    ……
    

    lm_train_list 格式:

    text1
    text2
    ……
    
  2. 下载bert的预训练模型,用于LM的辅助训练,如果你不需要LM可以跳过:

     https://pan.baidu.com/s/1_HDAhfGZfNhXS-cYoLQucA extraction code: 4hsa
    
  3. 修改配置文件 am_data.yml (in ./configs)来设置一些训练的选项,以及修改model yaml(如:./configs/conformer.yml) 里的name参数来选择模型结构。

  4. 然后执行命令:

    python train_am.py --data_config ./configs/am_data.yml --model_config ./configs/conformer.yml
  5. 想要测试时,可以参考 run-test.py 里写的demo,当然你可以修改 predict 方法来适应你的需求:

    from utils.user_config import UserConfig
    from AMmodel.model import AM
    from LMmodel.trm_lm import LM
    
    am_config=UserConfig(r'./configs/am_data.yml',r'./configs/conformer.yml')
    lm_config = UserConfig(r'./configs/lm_data.yml', r'./configs/transformer.yml')
    
    am=AM(am_config)
    am.load_model(training=False)
    
    lm=LM(lm_config)
    lm.load_model()
    
    am_result=am.predict(wav_path)
    if am.model_type=='Transducer':
       am_result =am.decode(am_result[1:-1])
       lm_result = lm.predict(am_result)
       lm_result = lm.decode(lm_result[0].numpy(), self.lm.word_featurizer)
    else:
       am_result=am.decode(am_result[0])
       lm_result=lm.predict(am_result)
       lm_result = lm.decode(lm_result[0].numpy(), self.lm.word_featurizer)

也可以使用Tester 来大批量测试数据验证你的模型性能:

第一步需要修改 am_data.yml/lm_data.yml 里的 eval_list ,格式与 train_list 相同

然后执行:

python eval_am.py --data_config ./configs/am_data.yml --model_config ./configs/conformer.yml

该脚本将展示 SER/CER/DEL/INS/SUB 几项指标

Your Model

如果你想加入你自己的模型,你可以将模型加入 ./AMmodel 目录里 ,声学、语言模型操作都一样,语言模型就放在 ./LMmodel

from AMmodel.transducer_wrap import Transducer
from AMmodel.ctc_wrap import CtcModel
from AMmodel.las_wrap import LAS,LASConfig
class YourModel(tf.keras.Model):
    def __init__(self,……):
        super(YourModel, self).__init__(……)
        ……
    
    def call(self, inputs, training=False, **kwargs):
       
        ……
        return decoded_feature
        
#To CTC
class YourModelCTC(CtcModel):
    def __init__(self,
                ……
                 **kwargs):
        super(YourModelCTC, self).__init__(
        encoder=YourModel(……),num_classes=vocabulary_size,name=name,
        )
        self.time_reduction_factor = reduction_factor #if you never use the downsample layer,set 1

#To Transducer
class YourModelTransducer(Transducer):
    def __init__(self,
                ……
                 **kwargs):
        super(YourModelTransducer, self).__init__(
            encoder=YourModel(……),
            vocabulary_size=vocabulary_size,
            embed_dim=embed_dim,
            embed_dropout=embed_dropout,
            num_lstms=num_lstms,
            lstm_units=lstm_units,
            joint_dim=joint_dim,
            name=name, **kwargs
        )
        self.time_reduction_factor = reduction_factor #if you never use the downsample layer,set 1

#To LAS
class YourModelLAS(LAS):
    def __init__(self,
                ……,
                config,# the config dict in model yml
                training,
                 **kwargs):
        config['LAS_decoder'].update({'encoder_dim':encoder_dim})# encoder_dim is your encoder's last dimension
        decoder_config=LASConfig(**config['LAS_decoder'])

        super(YourModelLAS, self).__init__(
        encoder=YourModel(……),
        config=decoder_config,
        training=training,
        )
        self.time_reduction_factor = reduction_factor #if you never use the downsample layer,set 1

然后,将你的模型添加到./AMmodel/model.py ,修改方法 load_model 来导入你的模型。

Convert to pb

AM/LM 的操作都相同:

from AMmodel.model import AM
am_config = UserConfig('...','...')
am=AM(am_config)
am.load_model(False)
am.convert_to_pb(export_path)

Tips

如果你想用你自己的音素,需要对应 am_dataloader.py/lm_dataloader.py 里的转换方法。

def init_text_to_vocab(self):#keep the name
    
    def text_to_vocab_func(txt):
        return your_convert_function

    self.text_to_vocab = text_to_vocab_func #here self.text_to_vocab is a function,not a call

不要忘记你的音素列表用 S/S 打头,e.g:

    S
    /S
    de
    shì
    ……

References

感谢关注:

https://github.com/usimarit/TiramisuASR modify from it

https://github.com/noahchalifour/warp-transducer

https://github.com/PaddlePaddle/DeepSpeech

https://github.com/baidu-research/warp-ctc

Licence

允许并感谢您使用本项目进行学术研究、商业产品生产等,但禁止将本项目作为商品进行交易。

Overall, Almost models here are licensed under the Apache 2.0 for all countries in the world.

Allow and thank you for using this project for academic research, commercial product production, allowing unrestricted commercial and non-commercial use alike.

However, it is prohibited to trade this project as a commodity.

About

Mandarin State-of-the-art Automatic Speech Recognition in Tensorflow 2

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 85.1%
  • C++ 14.9%