-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy pathpredict.py
182 lines (160 loc) · 6.36 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# pre-download the weights for 256 resolution model to checkpoints/ffhq256_autoenc and checkpoints/ffhq256_autoenc_cls
# wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
# bunzip2 shape_predictor_68_face_landmarks.dat.bz2
import os
import torch
from torchvision.utils import save_image
import tempfile
from templates import *
from templates_cls import *
from experiment_classifier import ClsModel
from align import LandmarksDetector, image_align
from cog import BasePredictor, Path, Input, BaseModel
class ModelOutput(BaseModel):
image: Path
class Predictor(BasePredictor):
def setup(self):
self.aligned_dir = "aligned"
os.makedirs(self.aligned_dir, exist_ok=True)
self.device = "cuda:0"
# Model Initialization
model_config = ffhq256_autoenc()
self.model = LitModel(model_config)
state = torch.load("checkpoints/ffhq256_autoenc/last.ckpt", map_location="cpu")
self.model.load_state_dict(state["state_dict"], strict=False)
self.model.ema_model.eval()
self.model.ema_model.to(self.device)
# Classifier Initialization
classifier_config = ffhq256_autoenc_cls()
classifier_config.pretrain = None # a bit faster
self.classifier = ClsModel(classifier_config)
state_class = torch.load(
"checkpoints/ffhq256_autoenc_cls/last.ckpt", map_location="cpu"
)
print("latent step:", state_class["global_step"])
self.classifier.load_state_dict(state_class["state_dict"], strict=False)
self.classifier.to(self.device)
self.landmarks_detector = LandmarksDetector(
"shape_predictor_68_face_landmarks.dat"
)
def predict(
self,
image: Path = Input(
description="Input image for face manipulation. Image will be aligned and cropped, "
"output aligned and manipulated images.",
),
target_class: str = Input(
default="Bangs",
choices=[
"5_o_Clock_Shadow",
"Arched_Eyebrows",
"Attractive",
"Bags_Under_Eyes",
"Bald",
"Bangs",
"Big_Lips",
"Big_Nose",
"Black_Hair",
"Blond_Hair",
"Blurry",
"Brown_Hair",
"Bushy_Eyebrows",
"Chubby",
"Double_Chin",
"Eyeglasses",
"Goatee",
"Gray_Hair",
"Heavy_Makeup",
"High_Cheekbones",
"Male",
"Mouth_Slightly_Open",
"Mustache",
"Narrow_Eyes",
"Beard",
"Oval_Face",
"Pale_Skin",
"Pointy_Nose",
"Receding_Hairline",
"Rosy_Cheeks",
"Sideburns",
"Smiling",
"Straight_Hair",
"Wavy_Hair",
"Wearing_Earrings",
"Wearing_Hat",
"Wearing_Lipstick",
"Wearing_Necklace",
"Wearing_Necktie",
"Young",
],
description="Choose manipulation direction.",
),
manipulation_amplitude: float = Input(
default=0.3,
ge=-0.5,
le=0.5,
description="When set too strong it would result in artifact as it could dominate the original image information.",
),
T_step: int = Input(
default=100,
choices=[50, 100, 125, 200, 250, 500],
description="Number of step for generation.",
),
T_inv: int = Input(default=200, choices=[50, 100, 125, 200, 250, 500]),
) -> List[ModelOutput]:
img_size = 256
print("Aligning image...")
for i, face_landmarks in enumerate(
self.landmarks_detector.get_landmarks(str(image)), start=1
):
image_align(str(image), f"{self.aligned_dir}/aligned.png", face_landmarks)
data = ImageDataset(
self.aligned_dir,
image_size=img_size,
exts=["jpg", "jpeg", "JPG", "png"],
do_augment=False,
)
print("Encoding and Manipulating the aligned image...")
cls_manipulation_amplitude = manipulation_amplitude
interpreted_target_class = target_class
if (
target_class not in CelebAttrDataset.id_to_cls
and f"No_{target_class}" in CelebAttrDataset.id_to_cls
):
cls_manipulation_amplitude = -manipulation_amplitude
interpreted_target_class = f"No_{target_class}"
batch = data[0]["img"][None]
semantic_latent = self.model.encode(batch.to(self.device))
stochastic_latent = self.model.encode_stochastic(
batch.to(self.device), semantic_latent, T=T_inv
)
cls_id = CelebAttrDataset.cls_to_id[interpreted_target_class]
class_direction = self.classifier.classifier.weight[cls_id]
normalized_class_direction = F.normalize(class_direction[None, :], dim=1)
normalized_semantic_latent = self.classifier.normalize(semantic_latent)
normalized_manipulation_amp = cls_manipulation_amplitude * math.sqrt(512)
normalized_manipulated_semantic_latent = (
normalized_semantic_latent
+ normalized_manipulation_amp * normalized_class_direction
)
manipulated_semantic_latent = self.classifier.denormalize(
normalized_manipulated_semantic_latent
)
# Render Manipulated image
manipulated_img = self.model.render(
stochastic_latent, manipulated_semantic_latent, T=T_step
)[0]
original_img = data[0]["img"]
model_output = []
out_path = Path(tempfile.mkdtemp()) / "original_aligned.png"
save_image(convert2rgb(original_img), str(out_path))
model_output.append(ModelOutput(image=out_path))
out_path = Path(tempfile.mkdtemp()) / "manipulated_img.png"
save_image(convert2rgb(manipulated_img, adjust_scale=False), str(out_path))
model_output.append(ModelOutput(image=out_path))
return model_output
def convert2rgb(img, adjust_scale=True):
convert_img = torch.tensor(img)
if adjust_scale:
convert_img = (convert_img + 1) / 2
return convert_img.cpu()