forked from xianlin7/SAMUS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_prompts.py
51 lines (48 loc) · 1.88 KB
/
generate_prompts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import random
def generate_click_prompt(img, msk, pt_label = 1):
# return: img, prompt, prompt mask
pt_list = []
msk_list = []
b, c, h, w, d = msk.size()
msk = msk[:,0,:,:,:]
for i in range(d):
pt_list_s = []
msk_list_s = []
for j in range(b):
msk_s = msk[j,:,:,i]
indices = torch.nonzero(msk_s)
if indices.size(0) == 0:
# generate a random array between [0-h, 0-h]:
random_index = torch.randint(0, h, (2,)).to(device = msk.device)
new_s = msk_s
else:
random_index = random.choice(indices)
label = msk_s[random_index[0], random_index[1]]
new_s = torch.zeros_like(msk_s)
# convert bool tensor to int
new_s = (msk_s == label).to(dtype = torch.float)
# new_s[msk_s == label] = 1
pt_list_s.append(random_index)
msk_list_s.append(new_s)
pts = torch.stack(pt_list_s, dim=0) # b 2
msks = torch.stack(msk_list_s, dim=0)
pt_list.append(pts) # c b 2
msk_list.append(msks)
pt = torch.stack(pt_list, dim=-1) # b 2 d
msk = torch.stack(msk_list, dim=-1) # b h w d
msk = msk.unsqueeze(1) # b c h w d
return img, pt, msk #[b, 2, d], [b, c, h, w, d]
def get_click_prompt(datapack, opt):
if 'pt' not in datapack:
imgs, pt, masks = generate_click_prompt(imgs, masks)
else:
pt = datapack['pt']
point_labels = datapack['p_label']
point_coords = pt
coords_torch = torch.as_tensor(point_coords, dtype=torch.float32, device=opt.device)
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=opt.device)
if len(pt.shape) == 2:
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
pt = (coords_torch, labels_torch)
return pt