forked from xianlin7/SAMUS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
93 lines (89 loc) · 3 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import torch
from hausdorff import hausdorff_distance
def dice_coefficient(pred, gt, smooth=1e-5):
""" computational formula:
dice = 2TP/(FP + 2TP + FN)
"""
N = gt.shape[0]
pred[pred >= 1] = 1
gt[gt >= 1] = 1
pred_flat = pred.reshape(N, -1)
gt_flat = gt.reshape(N, -1)
# if (pred.sum() + gt.sum()) == 0:
# return 1
intersection = (pred_flat * gt_flat).sum(1)
unionset = pred_flat.sum(1) + gt_flat.sum(1)
dice = (2 * intersection + smooth) / (unionset + smooth)
return dice.sum() / N
def sespiou_coefficient(pred, gt, smooth=1e-5):
""" computational formula:
sensitivity = TP/(TP+FN)
specificity = TN/(FP+TN)
iou = TP/(FP+TP+FN)
"""
N = gt.shape[0]
pred[pred >= 1] = 1
gt[gt >= 1] = 1
pred_flat = pred.reshape(N, -1)
gt_flat = gt.reshape(N, -1)
#pred_flat = pred.view(N, -1)
#gt_flat = gt.view(N, -1)
TP = (pred_flat * gt_flat).sum(1)
FN = gt_flat.sum(1) - TP
pred_flat_no = (pred_flat + 1) % 2
gt_flat_no = (gt_flat + 1) % 2
TN = (pred_flat_no * gt_flat_no).sum(1)
FP = pred_flat.sum(1) - TP
SE = (TP + smooth) / (TP + FN + smooth)
SP = (TN + smooth) / (FP + TN + smooth)
IOU = (TP + smooth) / (FP + TP + FN + smooth)
return SE.sum() / N, SP.sum() / N, IOU.sum() / N
def sespiou_coefficient2(pred, gt, all=False, smooth=1e-5):
""" computational formula:
sensitivity = TP/(TP+FN)
specificity = TN/(FP+TN)
iou = TP/(FP+TP+FN)
"""
N = gt.shape[0]
pred[pred >= 1] = 1
gt[gt >= 1] = 1
pred_flat = pred.reshape(N, -1)
gt_flat = gt.reshape(N, -1)
#pred_flat = pred.view(N, -1)
#gt_flat = gt.view(N, -1)
TP = (pred_flat * gt_flat).sum(1)
FN = gt_flat.sum(1) - TP
pred_flat_no = (pred_flat + 1) % 2
gt_flat_no = (gt_flat + 1) % 2
TN = (pred_flat_no * gt_flat_no).sum(1)
FP = pred_flat.sum(1) - TP
SE = (TP + smooth) / (TP + FN + smooth)
SP = (TN + smooth) / (FP + TN + smooth)
IOU = (TP + smooth) / (FP + TP + FN + smooth)
Acc = (TP + TN + smooth)/(TP + FP + FN + TN + smooth)
Precision = (TP + smooth) / (TP + FP + smooth)
Recall = (TP + smooth) / (TP + FN + smooth)
F1 = 2*Precision*Recall/(Recall + Precision +smooth)
if all:
return SE.sum() / N, SP.sum() / N, IOU.sum() / N, Acc.sum()/N, F1.sum()/N, Precision.sum()/N, Recall.sum()/N
else:
return IOU.sum() / N, Acc.sum()/N, SE.sum() / N, SP.sum() / N
def get_matrix(pred, gt, smooth=1e-5):
""" computational formula:
sensitivity = TP/(TP+FN)
specificity = TN/(FP+TN)
iou = TP/(FP+TP+FN)
"""
N = gt.shape[0]
pred[pred >= 1] = 1
gt[gt >= 1] = 1
pred_flat = pred.reshape(N, -1)
gt_flat = gt.reshape(N, -1)
TP = (pred_flat * gt_flat).sum(1)
FN = gt_flat.sum(1) - TP
pred_flat_no = (pred_flat + 1) % 2
gt_flat_no = (gt_flat + 1) % 2
TN = (pred_flat_no * gt_flat_no).sum(1)
FP = pred_flat.sum(1) - TP
return TP, FP, TN, FN