This repository has been archived by the owner on Jun 4, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmodel.py
79 lines (63 loc) · 2.84 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import torch
from torchvision.ops.boxes import batched_nms
import torchvision.transforms as T
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def detect(im, model, transform, device='cpu'):
# mean-std normalize the input image (batch-size: 1)
img = transform(im).unsqueeze(0).to(device)
model.to(device)
# propagate through the model
outputs = model(img)
# keep only predictions with confidence above threshold
probas = outputs['pred_logits'].softmax(-1)[0, :, :-1].cpu()
# convert boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, ].cpu(), im.size)
return probas, bboxes_scaled
def filter_boxes(scores, boxes, confidence=0.7, apply_nms=True, iou=0.5):
keep = scores.max(-1).values > confidence
scores, boxes = scores[keep], boxes[keep]
if apply_nms:
top_scores, labels = scores.max(-1)
keep = batched_nms(boxes, top_scores, labels, iou)
scores, boxes = scores[keep], boxes[keep]
return scores, boxes
# COCO classes
CLASSES = [
'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack',
'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass',
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A',
'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A',
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
'toothbrush'
]
# Load model
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
detr = torch.hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True)
detr.eval().to(DEVICE)
# standard PyTorch mean-std input image normalization
transform = T.Compose([
T.Resize(500),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# The following are imported in app:
# >> detect, filter_boxes, detr, transform, CLASSES, DEVICE