This repository has been archived by the owner on Jun 4, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 300
/
dash-celery-app.py
133 lines (109 loc) · 3.39 KB
/
dash-celery-app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from celery import Celery
import copy
import dash
from dash.dependencies import Input, Output
import dash_html_components as html
import dash_core_components as dcc
import datetime
from flask_caching import Cache
import numpy as np
import os
import pandas as pd
import time
app = dash.Dash(__name__)
def make_celery(server):
celery = Celery(app.import_name,
backend=server.config['CELERY_RESULT_BACKEND'],
broker=server.config['CELERY_BROKER_URL'])
celery.conf.update(server.config)
TaskBase = celery.Task
class ContextTask(TaskBase):
abstract = True
def __call__(self, *args, **kwargs):
with server.app_context():
return TaskBase.__call__(self, *args, **kwargs)
celery.Task = ContextTask
return celery
app.server.config.update(
CELERY_BROKER_URL='redis://localhost:6379',
CELERY_RESULT_BACKEND='redis://localhost:6379',
)
celery = make_celery(app.server)
df = pd.DataFrame({
'category': (
(['apples'] * 5) +
(['oranges'] * 10) +
(['figs'] * 20) +
(['pineapples'] * 15)
)
})
df['x'] = np.random.randn(len(df['category']))
df['y'] = np.random.randn(len(df['category']))
app.layout = html.Div([
dcc.Dropdown(
id='dropdown',
options=[{'label': i, 'value': i} for i in df['category'].unique()],
value='apples'
),
html.Div([
html.Div(dcc.Graph(id='graph-1'), className="six columns"),
html.Div(dcc.Graph(id='graph-2'), className="six columns"),
], className="row"),
html.Div([
html.Div(dcc.Graph(id='graph-3'), className="six columns"),
html.Div(dcc.Graph(id='graph-4'), className="six columns"),
], className="row")
])
@cache.memoize()
@celery.task()
def global_store(value):
# simulate expensive query
print('Computing value with {}'.format(value))
time.sleep(5)
return df[df['category'] == value]
def generate_figure(value, figure):
fig = copy.deepcopy(figure)
filtered_dataframe = global_store(value)
fig['data'][0]['x'] = filtered_dataframe['x']
fig['data'][0]['y'] = filtered_dataframe['y']
fig['layout'] = {'margin': {'l': 20, 'r': 10, 'b': 20, 't': 10}}
return fig
@app.callback(Output('graph-1', 'figure'), [Input('dropdown', 'value')])
def update_graph_1(value):
return generate_figure(value, {
'data': [{
'type': 'scatter',
'mode': 'markers'
}]
})
@app.callback(Output('graph-2', 'figure'), [Input('dropdown', 'value')])
def update_graph_2(value):
return generate_figure(value, {
'data': [{
'type': 'scatter',
'mode': 'lines',
'line': {'shape': 'spline'}
}]
})
@app.callback(Output('graph-3', 'figure'), [Input('dropdown', 'value')])
def update_graph_3(value):
return generate_figure(value, {
'data': [{
'type': 'bar',
}]
})
@app.callback(Output('graph-4', 'figure'), [Input('dropdown', 'value')])
def update_graph_4(value):
return generate_figure(value, {
'data': [{
'type': 'histogram2dcontour',
}]
})
# Dash CSS
app.css.append_css({
"external_url": "https://codepen.io/chriddyp/pen/bWLwgP.css"})
# Loading screen CSS
app.css.append_css({
"external_url": "https://codepen.io/chriddyp/pen/brPBPO.css"})
if __name__ == '__main__':
app.run_server(debug=True, processes=6)