See https://github.com/jolibrain/deepdetect/tree/master/docs/docker.md
Dockerfiles are stored in the "docker" folder, but you must launch build from root directory.
We choose to prefix Dockerfiles with target architecture :
- cpu.Dockerfile
- cpu-armv7.Dockerfile
- gpu.Dockerfile
Build script is available in docker path : build/build.sh
Docker build-arg : DEEPDETECT_BUILD
Description : DEEPDETECT_BUILD build argument change cmake arguments in build.sh script.
Expected values :
- CPU
- tf
- torch
- default
- GPU
- tf
- tf-cpu
- caffe-cpu-tf
- caffe-tf
- torch
- default
Create build directory and put build script inside :
mkdir build
cd build
cp -a ../build.sh .
DEEPDETECT_ARCH=cpu,gpu DEEPDETECT_BUILD=default,caffe-tf,armv7,[...] ./build.sh
Params usage: ./build.sh [options...]
-a, --deepdetect-arch Choose Deepdetect architecture : cpu,gpu
-b, --deepdetect-build Choose Deepdetect build profile : CPU (default,caffe-tf,armv7) / GPU (default,caffe-cpu-tf,caffe-tf,caffe2,p100,volta)
- DEEPDETECT_BUILD : Change cmake arguments, checkout build script documentation.
- DEEPDETECT_DEFAULT_MODELS : [true/false] Enable or disable default models in deepdetect docker image. Default models size is about 160MB.
You must launch build from root directory
Example with CPU image:
# Build with default cmake
export DOCKER_BUILDKIT=1
docker build -t jolibrain/deepdetect_cpu --no-cache -f docker/cpu.Dockerfile .
# Build with default cmake and without default models
export DOCKER_BUILDKIT=1
docker build --build-arg DEEPDETECT_DEFAULT_MODELS=false -t jolibrain/deepdetect_cpu --no-cache -f cpu.Dockerfile .
# Build with custom cmake
export DOCKER_BUILDKIT=1
docker build --build-arg DEEPDETECT_BUILD=caffe-tf -t jolibrain/deepdetect_cpu --no-cache -f docker/cpu.Dockerfile .
Example with CPU (armv7) image:
# Build with default cmake
export DOCKER_BUILDKIT=1
docker build -t jolibrain/deepdetect_cpu:armv7 --no-cache -f docker/cpu-armv7.Dockerfile .
Example with GPU image:
# Build with default cmake
export DOCKER_BUILDKIT=1
docker build -t jolibrain/deepdetect_gpu --no-cache -f docker/gpu.Dockerfile .
# Build with default cmake and without default models
export DOCKER_BUILDKIT=1
docker build --build-arg DEEPDETECT_DEFAULT_MODELS=false -t jolibrain/deepdetect_gpu --no-cache -f docker/gpu.Dockerfile .
# Build with custom cmake
export DOCKER_BUILDKIT=1
docker build --build-arg DEEPDETECT_BUILD=caffe-tf -t jolibrain/deepdetect_gpu --no-cache -f docker/gpu.Dockerfile .