%Evision.Mat{
channels: 3,
dims: 2,
type: {:u, 8},
raw_type: 16,
shape: {1080, 1920, 3},
ref: #Reference<0.1364157824.1534197778.893>
}
%YOLO.Model{
ref: #Ortex.Model<
inputs: [
{"images",
"Tensor {\n ty: Float32,\n dimensions: [\n 1,\n 3,\n 640,\n 640,\n ],\n}",
[1, 3, 640, 640]}
]
outputs: [
{"output0",
"Tensor {\n ty: Float32,\n dimensions: [\n 1,\n 84,\n 8400,\n ],\n}",
[1, 84, 8400]}
]>,
classes: %{
39 => "bottle",
74 => "clock",
59 => "bed",
69 => "oven",
67 => "cell phone",
45 => "bowl",
50 => "broccoli",
22 => "zebra",
51 => "carrot",
26 => "handbag",
63 => "laptop",
47 => "apple",
27 => "tie",
77 => "teddy bear",
0 => "person",
5 => "bus",
21 => "bear",
62 => "tv",
30 => "skis",
16 => "dog",
3 => "motorcycle",
53 => "pizza",
33 => "kite",
14 => "bird",
40 => "wine glass",
37 => "surfboard",
24 => "backpack",
17 => "horse",
48 => "sandwich",
73 => "book",
11 => "stop sign",
57 => "couch",
43 => "knife",
6 => "train",
20 => "elephant",
60 => "dining table",
28 => "suitcase",
25 => "umbrella",
1 => "bicycle",
58 => "potted plant",
32 => "sports ball",
76 => "scissors",
36 => "skateboard",
35 => "baseball glove",
15 => "cat",
78 => "hair drier",
64 => "mouse",
75 => "vase",
...
},
model_impl: YOLO.Models.YoloV8,
shapes: %{input: {1, 3, 640, 640}, output: {1, 84, 8400}}
}
YOLO.NMS: 550ms
YoloFastNMS: 37ms