-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbinary-tree-equality.cpp
280 lines (245 loc) · 6.77 KB
/
binary-tree-equality.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//] Write a function to compare whether two binary trees are identical.
//Identical
// trees have the same key value at each position and the same structure.
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <ostream>
#include <string>
using namespace std;
struct node {
int key_value;
node *left;
node *right;
};
class BinarySearchTree {
public:
BinarySearchTree();
~BinarySearchTree();
void insert(int key);
node *search(int key);
void *delete_(int key);
void Inorder_traversal();
void Preorder_traversal();
void Postorder_traversal();
int getHeight();
void destroy_tree();
void printTree();
node *root;
private:
void destroy_tree(node *leaf);
int maxDepth(node *leaf);
void insert(int key, node *leaf);
void Inorder_traversal(node *root);
void Preorder_traversal(node *root);
void Postorder_traversal(node *root);
void printBT(const string &prefix, node *node, bool isLeft);
node *minValueNode(node *node);
node *search(int key, node *leaf);
node *delete_(int key, node *leaf);
};
//-------------------------- IMplemenetataion======================
BinarySearchTree::BinarySearchTree() { root = NULL; }
BinarySearchTree::~BinarySearchTree() { destroy_tree(); }
void BinarySearchTree::destroy_tree(node *leaf) {
if (leaf != NULL) {
destroy_tree(leaf->left);
destroy_tree(leaf->right);
delete leaf;
}
}
void BinarySearchTree::insert(int key, node *leaf) {
if (key < leaf->key_value) {
if (leaf->left != NULL)
insert(key, leaf->left);
else {
leaf->left = new node;
leaf->left->key_value = key;
leaf->left->left = NULL; // Sets the left child of the child node to null
leaf->left->right = NULL; // Sets the right child of the child node to
// null
}
} else if (key >= leaf->key_value) {
if (leaf->right != NULL)
insert(key, leaf->right);
else {
leaf->right = new node;
leaf->right->key_value = key;
leaf->right->left = NULL; // Sets the left child of the child node to null
leaf->right->right =
NULL; // Sets the right child of the child node to null
}
}
}
node *BinarySearchTree::search(int key, node *leaf) {
if (leaf != NULL) {
if (key == leaf->key_value)
return leaf;
if (key < leaf->key_value)
return search(key, leaf->left);
else
return search(key, leaf->right);
} else
return NULL;
}
void BinarySearchTree::insert(int key) {
if (root != NULL)
insert(key, root);
else {
root = new node;
root->key_value = key;
root->left = NULL;
root->right = NULL;
}
}
void BinarySearchTree::Inorder_traversal() {
std::cout << "Inorder Traversal" << std::endl;
Inorder_traversal(root);
std::cout << std::endl;
}
void BinarySearchTree::Inorder_traversal(node *root) {
if (root != NULL) {
Inorder_traversal(root->left);
cout << " " << root->key_value;
Inorder_traversal(root->right);
}
}
void BinarySearchTree::Preorder_traversal() {
std::cout << "Preorder traversal" << std::endl;
Preorder_traversal(root);
std::cout << std::endl;
}
void BinarySearchTree::Preorder_traversal(node *root) {
if (root != NULL) {
cout << " " << root->key_value;
Preorder_traversal(root->left);
Preorder_traversal(root->right);
}
}
void BinarySearchTree::Postorder_traversal() {
std::cout << "PostOrder Traversal" << std::endl;
Postorder_traversal(root);
std::cout << std::endl;
}
void BinarySearchTree::Postorder_traversal(node *root) {
if (root != NULL) {
Postorder_traversal(root->left);
Postorder_traversal(root->right);
cout << " " << root->key_value;
}
}
int BinarySearchTree::maxDepth(node *root) {
if (root == NULL)
return 0;
else {
int leftDepth = maxDepth(root->left);
int rightDepth = maxDepth(root->right);
if (leftDepth > rightDepth) {
return rightDepth + 1;
} else {
return leftDepth + 1;
}
}
}
int BinarySearchTree::getHeight() { return maxDepth(root); }
node *BinarySearchTree::minValueNode(struct node *node) {
struct node *current = node;
/* loop down to find the leftmost leaf */
while (current && current->left != NULL)
current = current->left;
return current;
}
node *BinarySearchTree::delete_(int key, node *root) {
if (root == NULL)
return root;
if (key < root->key_value)
root->left = delete_(key, root->left);
else if (key > root->key_value)
root->right = delete_(key, root->right);
else {
if (root->left == NULL && root->right == NULL)
return NULL;
else if (root->left == NULL) {
node *temp = root->right;
free(root);
return temp;
} else if (root->right == NULL) {
node *temp = root->left;
free(root);
return temp;
}
node *temp = minValueNode(root->right);
root->key_value = temp->key_value;
root->right = delete_(temp->key_value, root->right);
}
return root;
}
void *BinarySearchTree::delete_(int key) {
if (root != NULL) {
delete_(key, root);
}
return nullptr;
}
void BinarySearchTree::printBT(const string &prefix, node *node, bool isLeft) {
if (node != nullptr) {
std::cout << prefix;
std::cout << (isLeft ? "├──" : "└──");
// print the value of the node
std::cout << node->key_value << std::endl;
// enter the next tree level - left and right branch
printBT(prefix + (isLeft ? "│ " : " "), node->left, true);
printBT(prefix + (isLeft ? "│ " : " "), node->right, false);
}
}
void BinarySearchTree::printTree() { printBT("", root, false); }
node *BinarySearchTree::search(int key) { return search(key, root); }
void BinarySearchTree::destroy_tree() { destroy_tree(root); }
bool compareTrees(node *t1, node *t2) {
if(t1&&t2){
return t1->key_value==t2->key_value && compareTrees(t1->left, t2->left)&& compareTrees(t1->right, t2->right);
}
return t1 == t2;
}
int main(int argc, char const *argv[]) {
BinarySearchTree bst1;
bst1.insert(10);
bst1.insert(7);
bst1.insert(8);
bst1.insert(1);
bst1.insert(9);
bst1.insert(2);
bst1.insert(12);
bst1.insert(5);
BinarySearchTree bst2;
bst2.insert(10);
bst2.insert(7);
bst2.insert(8);
bst2.insert(1);
bst2.insert(9);
bst2.insert(2);
bst2.insert(12);
bst2.insert(5);
std::cout << "Tree Equality : "
<< (compareTrees(bst1.root, bst2.root) ? "Yes" : "No") << std::endl;
BinarySearchTree bst3;
bst3.insert(10);
bst3.insert(7);
bst3.insert(8);
bst3.insert(1);
bst3.insert(9);
bst3.insert(2);
bst3.insert(12);
bst3.insert(5);
BinarySearchTree bst4;
bst4.insert(10);
bst4.insert(7);
bst4.insert(8);
bst4.insert(1);
bst4.insert(0);
bst4.insert(2);
bst4.insert(12);
bst4.insert(5);
std::cout << "Tree Equality : "
<< (compareTrees(bst3.root, bst4.root) ? "Yes" : "No") << std::endl;
return 0;
}