forked from CloudCompare/CloudCompare
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathccComparisonDlg.cpp
1116 lines (958 loc) · 32.9 KB
/
ccComparisonDlg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//##########################################################################
//# #
//# CLOUDCOMPARE #
//# #
//# This program is free software; you can redistribute it and/or modify #
//# it under the terms of the GNU General Public License as published by #
//# the Free Software Foundation; version 2 or later of the License. #
//# #
//# This program is distributed in the hope that it will be useful, #
//# but WITHOUT ANY WARRANTY; without even the implied warranty of #
//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
//# GNU General Public License for more details. #
//# #
//# COPYRIGHT: EDF R&D / TELECOM ParisTech (ENST-TSI) #
//# #
//##########################################################################
#include "ccComparisonDlg.h"
//Qt
#include <QHeaderView>
#include <QMessageBox>
//CCCoreLib
#include <DistanceComputationTools.h>
#include <MeshSamplingTools.h>
#include <ScalarField.h>
#include <DgmOctree.h>
#include <ScalarFieldTools.h>
//qCC_db
#include <ccLog.h>
#include <ccHObject.h>
#include <ccPointCloud.h>
#include <ccGenericMesh.h>
#include <ccOctree.h>
#include <ccProgressDialog.h>
#include <ccGBLSensor.h>
//CCPluginAPI
#include <ccQtHelpers.h>
//Local
#include "mainwindow.h"
#include "ccCommon.h"
#include "ccHistogramWindow.h"
//Qt
#include <QElapsedTimer>
#include <QThreadPool>
//System
#include <assert.h>
const unsigned char DEFAULT_OCTREE_LEVEL = 7;
static int s_maxThreadCount = ccQtHelpers::GetMaxThreadCount();
ccComparisonDlg::ccComparisonDlg( ccHObject* compEntity,
ccHObject* refEntity,
CC_COMPARISON_TYPE cpType,
QWidget* parent/*=nullptr*/,
bool noDisplay/*=false*/)
: QDialog(parent, Qt::Tool)
, Ui::ComparisonDialog()
, m_compEnt(compEntity)
, m_compCloud(nullptr)
, m_compOctree(nullptr)
, m_compOctreeIsPartial(false)
, m_compSFVisibility(false)
, m_refEnt(refEntity)
, m_refCloud(nullptr)
, m_refMesh(nullptr)
, m_refOctree(nullptr)
, m_refOctreeIsPartial(false)
, m_refVisibility(false)
, m_compType(cpType)
, m_noDisplay(noDisplay)
, m_bestOctreeLevel(0)
{
setupUi(this);
static const int MaxThreadCount = QThread::idealThreadCount();
maxThreadCountSpinBox->setRange(1, MaxThreadCount);
maxThreadCountSpinBox->setSuffix(QString(" / %1").arg(MaxThreadCount));
maxThreadCountSpinBox->setValue(s_maxThreadCount);
//populate the combo-boxes
{
//octree level
octreeLevelComboBox->addItem("AUTO");
for (int i = 1; i <= CCCoreLib::DgmOctree::MAX_OCTREE_LEVEL; ++i)
octreeLevelComboBox->addItem(QString::number(i));
//local model
localModelComboBox->addItem("NONE");
localModelComboBox->addItem("Least Square Plane");
localModelComboBox->addItem("2D1/2 Triangulation");
localModelComboBox->addItem("Quadric");
localModelComboBox->setCurrentIndex(0);
}
signedDistCheckBox->setChecked(false);
split3DCheckBox->setEnabled(false);
okButton->setEnabled(false);
compName->setText(m_compEnt->getName());
refName->setText(m_refEnt->getName());
preciseResultsTabWidget->setCurrentIndex(0);
m_refVisibility = (m_refEnt ? m_refEnt->isVisible() : false);
m_compSFVisibility = (m_compEnt ? m_compEnt->sfShown() : false);
if (!prepareEntitiesForComparison())
return;
assert(compEntity);
ccBBox compEntBBox = compEntity->getOwnBB();
maxSearchDistSpinBox->setValue(compEntBBox.getDiagNorm());
if (m_refMesh)
{
localModelingTab->setEnabled(false);
signedDistCheckBox->setEnabled(true);
signedDistCheckBox->setChecked(true);
filterVisibilityCheckBox->setEnabled(false);
filterVisibilityCheckBox->setVisible(false);
}
else
{
signedDistCheckBox->setEnabled(false);
split3DCheckBox->setEnabled(true);
lmRadiusDoubleSpinBox->setValue(compEntBBox.getDiagNorm() / 200.0);
filterVisibilityCheckBox->setEnabled(m_refCloud && m_refCloud->isA(CC_TYPES::POINT_CLOUD) && static_cast<ccPointCloud*>(m_refCloud)->hasSensor());
}
connect(cancelButton, &QPushButton::clicked, this, &ccComparisonDlg::cancelAndExit);
connect(okButton, &QPushButton::clicked, this, &ccComparisonDlg::applyAndExit);
connect(computeButton, &QPushButton::clicked, this, &ccComparisonDlg::computeDistances);
connect(histoButton, &QPushButton::clicked, this, &ccComparisonDlg::showHisto);
connect(maxDistCheckBox, &QCheckBox::toggled, this, &ccComparisonDlg::maxDistUpdated);
connect(localModelComboBox, qOverload<int>(&QComboBox::currentIndexChanged), this, &ccComparisonDlg::locaModelChanged);
connect(maxSearchDistSpinBox, qOverload<double>(&QDoubleSpinBox::valueChanged), this, &ccComparisonDlg::maxDistUpdated);
connect(split3DCheckBox, &QCheckBox::toggled, this, &ccComparisonDlg::enableCompute2D);
}
ccComparisonDlg::~ccComparisonDlg()
{
releaseOctrees();
}
bool ccComparisonDlg::prepareEntitiesForComparison()
{
if (!m_compEnt || !m_refEnt)
return false;
//compared entity
if (!m_compEnt->isA(CC_TYPES::POINT_CLOUD)) //TODO --> pas possible avec des GenericPointCloud ? :(
{
if (m_compType == CLOUDCLOUD_DIST || (m_compType == CLOUDMESH_DIST && !m_compEnt->isKindOf(CC_TYPES::MESH)))
{
ccLog::Error("Dialog initialization error! (bad entity type)");
return false;
}
ccGenericMesh* compMesh = ccHObjectCaster::ToGenericMesh(m_compEnt);
if (!compMesh->getAssociatedCloud()->isA(CC_TYPES::POINT_CLOUD)) //TODO
{
ccLog::Error("Dialog initialization error! (bad entity type - works only with real point clouds [todo])");
return false;
}
m_compCloud = static_cast<ccPointCloud*>(compMesh->getAssociatedCloud());
}
else
{
m_compCloud = static_cast<ccPointCloud*>(m_compEnt);
}
//whatever the case, we always need the compared cloud's octree
m_compOctree = m_compCloud->getOctree();
if (!m_compOctree)
{
m_compOctree = ccOctree::Shared(new ccOctree(m_compCloud));
}
m_compOctreeIsPartial = false;
//backup currently displayed SF (on compared cloud)
int oldSfIdx = m_compCloud->getCurrentDisplayedScalarFieldIndex();
if (oldSfIdx >= 0)
m_oldSfName = QString(m_compCloud->getScalarFieldName(oldSfIdx));
//reference entity
if ( (m_compType == CLOUDMESH_DIST && !m_refEnt->isKindOf(CC_TYPES::MESH))
|| (m_compType == CLOUDCLOUD_DIST && !m_refEnt->isA(CC_TYPES::POINT_CLOUD)) )
{
ccLog::Error("Dialog initialization error! (bad entity type)");
return false;
}
if (m_compType == CLOUDMESH_DIST)
{
m_refMesh = ccHObjectCaster::ToGenericMesh(m_refEnt);
m_refCloud = m_refMesh->getAssociatedCloud();
m_refOctree.clear();
}
else /*if (m_compType == CLOUDCLOUD_DIST)*/
{
m_refCloud = ccHObjectCaster::ToGenericPointCloud(m_refEnt);
//for computing cloud/cloud distances we need also the reference cloud's octree
m_refOctree = m_refCloud->getOctree();
if (!m_refOctree)
{
m_refOctree = ccOctree::Shared(new ccOctree(m_refCloud));
}
}
m_refOctreeIsPartial = false;
return true;
}
void ccComparisonDlg::maxDistUpdated()
{
//the current 'best octree level' is depreacted
m_bestOctreeLevel = 0;
}
void ccComparisonDlg::enableCompute2D(bool state)
{
compute2DCheckBox->setEnabled(state);
}
int ccComparisonDlg::getBestOctreeLevel()
{
if (m_bestOctreeLevel == 0)
{
double maxDistance = (maxDistCheckBox->isChecked() ? maxSearchDistSpinBox->value() : 0);
int bestOctreeLevel = determineBestOctreeLevel(maxDistance);
if (bestOctreeLevel <= 0)
{
ccLog::Error("Can't evaluate best octree level! Try to set it manually ...");
return -1;
}
m_bestOctreeLevel = bestOctreeLevel;
}
return m_bestOctreeLevel;
}
void ccComparisonDlg::locaModelChanged(int index)
{
localModelParamsFrame->setEnabled(index != 0);
if (index != 0)
{
unsigned minKNN = CCCoreLib::CC_LOCAL_MODEL_MIN_SIZE[index];
lmKNNSpinBox->setMinimum(minKNN);
}
}
void ccComparisonDlg::releaseOctrees()
{
if (m_compOctree && m_compCloud)
{
m_compOctree.clear();
m_compOctreeIsPartial = false;
}
if (m_refOctree && m_refCloud)
{
m_refOctree.clear();
m_refOctreeIsPartial = false;
}
}
void ccComparisonDlg::updateDisplay(bool showSF, bool showRef)
{
if (m_noDisplay)
return;
if (m_compEnt)
{
m_compEnt->setVisible(true);
m_compEnt->setEnabled(true);
m_compEnt->showSF(showSF);
m_compEnt->prepareDisplayForRefresh_recursive();
}
if (m_refEnt)
{
m_refEnt->setVisible(showRef);
m_refEnt->prepareDisplayForRefresh_recursive();
}
MainWindow::UpdateUI();
MainWindow::RefreshAllGLWindow(false);
}
bool ccComparisonDlg::isValid()
{
if ( !m_compCloud
|| !m_compOctree
|| (!m_refMesh && !m_refCloud)
|| (!m_refMesh && !m_refOctree))
{
ccLog::Error("Dialog initialization error! (void entity)");
return false;
}
return true;
}
bool ccComparisonDlg::computeApproxDistances()
{
histoButton->setEnabled(false);
preciseResultsTabWidget->widget(2)->setEnabled(false);
if (!isValid())
return false;
//create the approximate dist. SF if necessary
int sfIdx = m_compCloud->getScalarFieldIndexByName(CC_TEMP_APPROX_DISTANCES_DEFAULT_SF_NAME);
if (sfIdx < 0)
{
sfIdx = m_compCloud->addScalarField(CC_TEMP_APPROX_DISTANCES_DEFAULT_SF_NAME);
if (sfIdx < 0)
{
ccLog::Error("Failed to allocate a new scalar field for computing approx. distances! Try to free some memory ...");
return false;
}
}
m_compCloud->setCurrentScalarField(sfIdx);
CCCoreLib::ScalarField* sf = m_compCloud->getCurrentInScalarField();
assert(sf);
//prepare the octree structures
QScopedPointer<ccProgressDialog> progressDlg;
if (parentWidget())
{
progressDlg.reset(new ccProgressDialog(true, this));
progressDlg->show();
}
int approxResult = -1;
QElapsedTimer eTimer;
eTimer.start();
switch (m_compType)
{
case CLOUDCLOUD_DIST: //cloud-cloud
{
approxResult = CCCoreLib::DistanceComputationTools::computeApproxCloud2CloudDistance( m_compCloud,
m_refCloud,
DEFAULT_OCTREE_LEVEL,
0,
progressDlg.data(),
m_compOctree.data(),
m_refOctree.data());
}
break;
case CLOUDMESH_DIST: //cloud-mesh
{
CCCoreLib::DistanceComputationTools::Cloud2MeshDistancesComputationParams c2mParams;
{
c2mParams.octreeLevel = DEFAULT_OCTREE_LEVEL;
c2mParams.maxSearchDist = 0;
c2mParams.useDistanceMap = true;
c2mParams.signedDistances = false;
c2mParams.flipNormals = false;
c2mParams.multiThread = false;
}
approxResult = CCCoreLib::DistanceComputationTools::computeCloud2MeshDistances( m_compCloud,
m_refMesh,
c2mParams,
progressDlg.data(),
m_compOctree.data());
}
break;
default:
assert(false);
break;
}
qint64 elapsedTime_ms = eTimer.elapsed();
if (progressDlg)
{
progressDlg->stop();
}
//if the approximate distances comptation failed...
if (approxResult < 0)
{
ccLog::Warning("[computeApproxDistances] Computation failed (error code %i)", approxResult);
m_compCloud->deleteScalarField(sfIdx);
sfIdx = -1;
}
else
{
ccLog::Print("[computeApproxDistances] Time: %3.2f s.", elapsedTime_ms / 1.0e3);
//display approx. dist. statistics
ScalarType mean;
ScalarType variance;
sf->computeMinAndMax();
sf->computeMeanAndVariance(mean,&variance);
approxStats->setColumnCount(2);
approxStats->setRowCount(5);
approxStats->setColumnWidth(1,200);
approxStats->horizontalHeader()->hide();
int curRow = 0;
//min dist
approxStats->setItem(curRow, 0, new QTableWidgetItem("Min dist."));
approxStats->setItem(curRow++, 1, new QTableWidgetItem(QString("%1").arg(sf->getMin())));
//max dist
approxStats->setItem(curRow, 0, new QTableWidgetItem("Max dist."));
approxStats->setItem(curRow++, 1, new QTableWidgetItem(QString("%1").arg(sf->getMax())));
//mean dist
approxStats->setItem(curRow, 0, new QTableWidgetItem("Avg dist."));
approxStats->setItem(curRow++, 1, new QTableWidgetItem(QString("%1").arg(mean)));
//sigma
approxStats->setItem(curRow, 0, new QTableWidgetItem("Sigma"));
approxStats->setItem(curRow++, 1, new QTableWidgetItem(QString("%1").arg(variance >= 0.0 ? sqrt(variance) : variance)));
//Max relative error
PointCoordinateType cs = m_compOctree->getCellSize(DEFAULT_OCTREE_LEVEL);
double e = cs / 2.0;
approxStats->setItem(curRow, 0, new QTableWidgetItem("Max error"));
approxStats->setItem(curRow++, 1, new QTableWidgetItem(QString("%1").arg(e)));
for (int i = 0; i < curRow; ++i)
{
approxStats->setRowHeight(i, 20);
}
approxStats->setEditTriggers(QAbstractItemView::NoEditTriggers);
//enable the corresponding UI items
preciseResultsTabWidget->widget(2)->setEnabled(true);
histoButton->setEnabled(true);
//init the max search distance
maxSearchDistSpinBox->setValue(sf->getMax());
//update display
m_compCloud->setCurrentDisplayedScalarField(sfIdx);
m_compCloud->showSF(sfIdx >= 0);
}
computeButton->setEnabled(true);
preciseResultsTabWidget->setEnabled(true);
//we don't let the user leave with approximate distances!!!
okButton->setEnabled(false);
updateDisplay(sfIdx >= 0, false);
return true;
}
int ccComparisonDlg::determineBestOctreeLevel(double maxSearchDist)
{
if (!isValid())
{
return -1;
}
//make sure a the temporary dist. SF is activated
int sfIdx = m_compCloud->getScalarFieldIndexByName(CC_TEMP_APPROX_DISTANCES_DEFAULT_SF_NAME);
if (sfIdx < 0)
{
//we must compute approx. results again
if (!computeApproxDistances())
{
//failed to compute approx distances?!
return -1;
}
sfIdx = m_compCloud->getScalarFieldIndexByName(CC_TEMP_APPROX_DISTANCES_DEFAULT_SF_NAME);
}
const CCCoreLib::ScalarField* approxDistances = m_compCloud->getScalarField(sfIdx);
if (!approxDistances)
{
assert(sfIdx >= 0);
return -1;
}
//evalutate the theoretical time for each octree level
const int MAX_OCTREE_LEVEL = m_refMesh ? 9 : CCCoreLib::DgmOctree::MAX_OCTREE_LEVEL; //DGM: can't go higher than level 9 with a mesh as the grid is 'plain' and would take too much memory!
std::vector<double> timings;
try
{
timings.resize(MAX_OCTREE_LEVEL, 0);
}
catch (const std::bad_alloc&)
{
ccLog::Warning("Can't determine best octree level: not enough memory!");
return -1;
}
//if the reference is a mesh
double meanTriangleSurface = 1.0;
CCCoreLib::GenericIndexedMesh* mesh = nullptr;
if (!m_refOctree)
{
if (!m_refMesh)
{
ccLog::Error("Internal error: reference entity should be a mesh!");
return -1;
}
mesh = static_cast<CCCoreLib::GenericIndexedMesh*>(m_refMesh);
if (!mesh || mesh->size() == 0)
{
ccLog::Warning("Can't determine best octree level: mesh is empty!");
return -1;
}
//total mesh surface
double meshSurface = CCCoreLib::MeshSamplingTools::computeMeshArea(mesh);
//average triangle surface
if (meshSurface > 0)
{
meanTriangleSurface = meshSurface / mesh->size();
}
}
//we skip the lowest subdivision levels (useless + incompatible with below formulas ;)
static const int s_minOctreeLevel = 6;
int theBestOctreeLevel = s_minOctreeLevel;
//we don't test the very first and very last level
QScopedPointer<ccProgressDialog> progressDlg;
if (parentWidget())
{
progressDlg.reset(new ccProgressDialog(false, this));
progressDlg->setMethodTitle(tr("Determining optimal octree level"));
progressDlg->setInfo(tr("Testing %1 levels...").arg(MAX_OCTREE_LEVEL)); //we lie here ;)
progressDlg->start();
}
CCCoreLib::NormalizedProgress nProgress(progressDlg.data(), MAX_OCTREE_LEVEL - 2);
QApplication::processEvents();
bool maxDistanceDefined = maxDistCheckBox->isChecked();
PointCoordinateType maxDistance = static_cast<PointCoordinateType>(maxDistanceDefined ? maxSearchDistSpinBox->value() : 0);
uint64_t maxNeighbourhoodVolume = static_cast<uint64_t>(1) << (3 * MAX_OCTREE_LEVEL);
//for each level
for (int level = s_minOctreeLevel; level < MAX_OCTREE_LEVEL; ++level)
{
const unsigned char bitDec = CCCoreLib::DgmOctree::GET_BIT_SHIFT(level);
unsigned numberOfPointsInCell = 0;
unsigned index = 0;
double cellDist = -1;
//unsigned skippedCells = 0;
//we compute a 'correction factor' that converts an approximate distance into an
//approximate size of the neighborhood (in terms of cells)
PointCoordinateType cellSize = m_compOctree->getCellSize(static_cast<unsigned char>(level));
//we also use the reference cloud density (points/cell) if we have the info
double refListDensity = 1.0;
if (m_refOctree)
{
refListDensity = m_refOctree->computeMeanOctreeDensity(static_cast<unsigned char>(level));
}
CCCoreLib::DgmOctree::CellCode tempCode = 0xFFFFFFFF;
//scan the octree structure
const CCCoreLib::DgmOctree::cellsContainer& compCodes = m_compOctree->pointsAndTheirCellCodes();
for (CCCoreLib::DgmOctree::cellsContainer::const_iterator c = compCodes.begin(); c != compCodes.end(); ++c)
{
CCCoreLib::DgmOctree::CellCode truncatedCode = (c->theCode >> bitDec);
//new cell?
if (truncatedCode != tempCode)
{
//if it's a real cell
if (numberOfPointsInCell != 0)
{
//if 'maxSearchDist' has been defined by the user, we must take it into account!
//(in this case we skip the cell if its approx. distance is superior)
if (maxSearchDist <= 0 || cellDist <= maxSearchDist)
{
//approx. neighborhood radius
cellDist /= cellSize;
//approx. neighborhood width (in terms of cells)
double neighbourSize = 2.0*cellDist + 1.0;
//if the reference is a mesh
if (mesh)
{
//(integer) approximation of the neighborhood size (in terms of cells)
int nCell = static_cast<int>(ceil(cellDist));
//Probable mesh surface in this neighborhood
double crossingMeshSurface = (2.0*nCell+1.0) * cellSize;
//squared surface!
crossingMeshSurface *= crossingMeshSurface;
//neighborhood "volume" (in terms of cells)
double neighbourSize3 = (neighbourSize*neighbourSize*neighbourSize) / maxNeighbourhoodVolume;
//TIME = NEIGHBORS SEARCH + proportional factor * POINTS/TRIANGLES COMPARISONS
timings[level] += neighbourSize3 + ((0.5 * numberOfPointsInCell) / maxNeighbourhoodVolume) * (crossingMeshSurface / meanTriangleSurface);
}
else
{
//we ignore the "central" cell
neighbourSize -= 1.0;
//neighborhood "volume" (in terms of cells)
double neighbourSize3 = (neighbourSize*neighbourSize*neighbourSize) / maxNeighbourhoodVolume;
//volume of the last "slice" (in terms of cells)
//=V(n)-V(n-1) = (2*n+1)^3 - (2*n-1)^3 = 24 * n^2 + 2 (if n > 0)
double lastSliceCellCount = (cellDist > 0 ? cellDist*cellDist * 24.0 + 2.0 : 1.0);
//TIME = NEIGHBORS SEARCH + proportional factor * POINTS/TRIANGLES COMPARISONS
//(we admit that the filled cells roughly correspond to the sqrt of the total number of cells)
timings[level] += neighbourSize3 + 0.1 * ((numberOfPointsInCell * sqrt(lastSliceCellCount) * refListDensity) / maxNeighbourhoodVolume);
}
}
//else
//{
// ++skippedCells;
//}
}
numberOfPointsInCell = 0;
cellDist = 0;
tempCode = truncatedCode;
}
ScalarType pointDist = approxDistances->getValue(index);
if (maxDistanceDefined && pointDist > maxDistance)
{
pointDist = maxDistance;
}
//cellDist += pointDist;
cellDist = std::max<double>(cellDist, pointDist);
++index;
++numberOfPointsInCell;
}
////very high levels are unlikely (levelModifier ~ 0.85 @ level 20)
//{
// double levelModifier = level < 12 ? 1.0 : exp(-pow(level-12,2)/(20*20));
// timings[level] /= levelModifier;
// ccLog::PrintDebug(QString("[Distances] Level %1 - timing = %2 (modifier = %3)").arg(level).arg(timings[level]).arg(levelModifier));
//}
//ccLog::Print("[Timing] Level %i --> %2.12f", level, timings[level]);
if (timings[level] * 1.05 < timings[theBestOctreeLevel]) //avoid increasing the octree level for super small differences (which is generally counter productive)
{
theBestOctreeLevel = level;
}
nProgress.oneStep();
}
ccLog::PrintDebug("[Distances] Best level: %i (maxSearchDist = %f)", theBestOctreeLevel, maxSearchDist);
return theBestOctreeLevel;
}
bool ccComparisonDlg::computeDistances()
{
if (!isValid())
return false;
int octreeLevel = octreeLevelComboBox->currentIndex();
assert(octreeLevel <= CCCoreLib::DgmOctree::MAX_OCTREE_LEVEL);
if (octreeLevel == 0)
{
//we'll try to guess the best octree level
octreeLevel = getBestOctreeLevel();
if (octreeLevel <= 0)
{
//best octree level computation failed?!
return false;
}
ccLog::Print(QString("[Distances] Octree level (auto): %1").arg(octreeLevel));
}
//options
bool signedDistances = signedDistCheckBox->isEnabled() && signedDistCheckBox->isChecked();
bool flipNormals = (signedDistances ? flipNormalsCheckBox->isChecked() : false);
bool split3D = split3DCheckBox->isEnabled() && split3DCheckBox->isChecked();
bool mergeXY = compute2DCheckBox->isChecked();
//does the cloud has already a temporary scalar field that we can use?
int sfIdx = m_compCloud->getScalarFieldIndexByName(CC_TEMP_DISTANCES_DEFAULT_SF_NAME);
if (sfIdx < 0)
{
//we need to create a new scalar field
sfIdx = m_compCloud->addScalarField(CC_TEMP_DISTANCES_DEFAULT_SF_NAME);
if (sfIdx < 0)
{
ccLog::Error("Couldn't allocate a new scalar field for computing distances! Try to free some memory ...");
return false;
}
}
m_compCloud->setCurrentScalarField(sfIdx);
CCCoreLib::ScalarField* sf = m_compCloud->getCurrentInScalarField();
assert(sf);
//max search distance
ScalarType maxSearchDist = static_cast<ScalarType>(maxDistCheckBox->isChecked() ? maxSearchDistSpinBox->value() : 0);
//multi-thread
bool multiThread = multiThreadedCheckBox->isChecked();
CCCoreLib::DistanceComputationTools::Cloud2CloudDistancesComputationParams c2cParams;
CCCoreLib::DistanceComputationTools::Cloud2MeshDistancesComputationParams c2mParams;
s_maxThreadCount = c2cParams.maxThreadCount = c2mParams.maxThreadCount = maxThreadCountSpinBox->value();
ccLog::Print(QString("[Distances] Will use %1 threads").arg(s_maxThreadCount));
int result = -1;
QScopedPointer<ccProgressDialog> progressDlg;
if (parentWidget())
{
progressDlg.reset(new ccProgressDialog(true, this));
}
QElapsedTimer eTimer;
eTimer.start();
switch (m_compType)
{
case CLOUDCLOUD_DIST: //cloud-cloud
if (split3D)
{
//we create 3 new scalar fields, one for each dimension
unsigned count = m_compCloud->size();
bool success = true;
for (unsigned j = 0; j < 3; ++j)
{
ccScalarField* sfDim = new ccScalarField();
if (sfDim->resizeSafe(count))
{
sfDim->link();
c2cParams.splitDistances[j] = sfDim;
}
else
{
success = false;
break;
}
}
if (!success)
{
ccLog::Error("[ComputeDistances] Not enough memory to generate 3D split fields!");
for (unsigned j = 0; j < 3; ++j)
{
if (c2cParams.splitDistances[j])
{
c2cParams.splitDistances[j]->release();
c2cParams.splitDistances[j] = nullptr;
}
}
}
}
if (m_refCloud->isA(CC_TYPES::POINT_CLOUD))
{
ccPointCloud* pc = static_cast<ccPointCloud*>(m_refCloud);
//we enable the visibility checking if the user asked for it
bool filterVisibility = filterVisibilityCheckBox->isEnabled() && filterVisibilityCheckBox->isChecked();
if (filterVisibility)
{
size_t validDB = 0;
//we also make sure that the sensors have valid depth buffer!
for (unsigned i = 0; i < pc->getChildrenNumber(); ++i)
{
ccHObject* child = pc->getChild(i);
if (child && child->isA(CC_TYPES::GBL_SENSOR))
{
ccGBLSensor* sensor = static_cast<ccGBLSensor*>(child);
if (sensor->getDepthBuffer().zBuff.empty())
{
int errorCode;
if (!sensor->computeDepthBuffer(pc, errorCode))
{
ccLog::Warning(QString("[ComputeDistances] ") + ccGBLSensor::GetErrorString(errorCode));
}
else
{
++validDB;
}
}
else
{
++validDB;
}
}
}
if (validDB == 0)
{
filterVisibilityCheckBox->setChecked(false);
if (QMessageBox::warning( this,
"Error",
"Failed to find/init the depth buffer(s) on the associated sensor! Do you want to continue?",
QMessageBox::Yes,
QMessageBox::No) == QMessageBox::No)
{
break;
}
filterVisibility = false;
}
}
pc->enableVisibilityCheck(filterVisibility);
}
//setup parameters
{
c2cParams.octreeLevel = static_cast<unsigned char>(octreeLevel);
if (localModelingTab->isEnabled())
{
c2cParams.localModel = (CCCoreLib::LOCAL_MODEL_TYPES)localModelComboBox->currentIndex();
if (c2cParams.localModel != CCCoreLib::NO_MODEL)
{
c2cParams.useSphericalSearchForLocalModel = lmRadiusRadioButton->isChecked();
c2cParams.kNNForLocalModel = static_cast<unsigned>(std::max(0,lmKNNSpinBox->value()));
c2cParams.radiusForLocalModel = static_cast<ScalarType>(lmRadiusDoubleSpinBox->value());
c2cParams.reuseExistingLocalModels = lmOptimizeCheckBox->isChecked();
}
}
c2cParams.maxSearchDist = maxSearchDist;
c2cParams.multiThread = multiThread;
c2cParams.CPSet = nullptr;
}
result = CCCoreLib::DistanceComputationTools::computeCloud2CloudDistances( m_compCloud,
m_refCloud,
c2cParams,
progressDlg.data(),
m_compOctree.data(),
m_refOctree.data());
break;
case CLOUDMESH_DIST: //cloud-mesh
if (multiThread && maxDistCheckBox->isChecked())
{
ccLog::Warning("[Cloud/Mesh comparison] Max search distance is not supported in multi-thread mode! Switching to single thread mode...");
}
//setup parameters
{
c2mParams.octreeLevel = static_cast<unsigned char>(octreeLevel);
c2mParams.maxSearchDist = maxSearchDist;
c2mParams.useDistanceMap = false;
c2mParams.signedDistances = signedDistances;
c2mParams.flipNormals = flipNormals;
c2mParams.multiThread = multiThread;
}
result = CCCoreLib::DistanceComputationTools::computeCloud2MeshDistances( m_compCloud,
m_refMesh,
c2mParams,
progressDlg.data(),
m_compOctree.data());
break;
}
qint64 elapsedTime_ms = eTimer.elapsed();
if (progressDlg)
{
progressDlg->stop();
}
if (result >= 0)
{
ccLog::Print("[ComputeDistances] Time: %3.2f s.", elapsedTime_ms / 1.0e3);
//display some statics about the computed distances
ScalarType mean;
ScalarType variance;
sf->computeMinAndMax();
sf->computeMeanAndVariance(mean, &variance);
ccLog::Print("[ComputeDistances] " + tr("Mean distance = %1 / std deviation = %2").arg(mean).arg(sqrt(variance)));
m_compCloud->setCurrentDisplayedScalarField(sfIdx);
m_compCloud->showSF(sfIdx >= 0);
//restore UI items
okButton->setEnabled(true);
m_sfName.clear();
switch(m_compType)
{
case CLOUDCLOUD_DIST: //hausdorff
m_sfName = QString(CC_CLOUD2CLOUD_DISTANCES_DEFAULT_SF_NAME);
break;
case CLOUDMESH_DIST: //cloud-mesh
m_sfName = QString(signedDistances ? CC_CLOUD2MESH_SIGNED_DISTANCES_DEFAULT_SF_NAME : CC_CLOUD2MESH_DISTANCES_DEFAULT_SF_NAME);
break;
}
if (c2cParams.localModel != CCCoreLib::NO_MODEL)
{
m_sfName += QString("[%1]").arg(localModelComboBox->currentText());
if (c2cParams.useSphericalSearchForLocalModel)
m_sfName += QString("[r=%1]").arg(c2cParams.radiusForLocalModel);
else
m_sfName += QString("[k=%1]").arg(c2cParams.kNNForLocalModel);
if (c2cParams.reuseExistingLocalModels)
m_sfName += QString("[fast]");
}
if (flipNormals)
{
m_sfName += QString("[-]");
}
if (maxSearchDist > 0)
{
m_sfName += QString("[<%1]").arg(maxSearchDist);
}
if (split3D)
{
//we add the corresponding scalar fields (one for each dimension)
static const QChar charDim[3] = { 'X', 'Y', 'Z' };
for (unsigned j = 0; j < 3; ++j)
{
CCCoreLib::ScalarField* sf = c2cParams.splitDistances[j];
if (sf)
{
sf->setName(qPrintable(m_sfName + QString(" (%1)").arg(charDim[j])));
sf->computeMinAndMax();
//check that SF doesn't already exist
int sfExit = m_compCloud->getScalarFieldIndexByName(sf->getName());
if (sfExit >= 0)
m_compCloud->deleteScalarField(sfExit);
int sfEnter = m_compCloud->addScalarField(static_cast<ccScalarField*>(sf));
assert(sfEnter >= 0);
}
}
ccLog::Warning("[ComputeDistances] Result has been split along each dimension (check the 3 other scalar fields with '_X', '_Y' and '_Z' suffix!)");
if (mergeXY)
{
ccLog::Warning("[ComputeDistances] compute 2D distances (xy plane)");
int sf2D = m_compCloud->getScalarFieldIndexByName(qPrintable(m_sfName + QString(" (XY)")));
if (sf2D < 0)
sf2D = m_compCloud->addScalarField(qPrintable(m_sfName + QString(" (XY)")));
if (sf2D < 0)
{
ccLog::Error("[ComputeDistances] impossible to add XY scalar field");
return 0;
}
CCCoreLib::ScalarField* sf = m_compCloud->getScalarField(sf2D);
for (unsigned idx = 0; idx < m_compCloud->size(); idx++)
{
float d2D = pow(pow(c2cParams.splitDistances[0]->getValue(idx), 2) + pow(c2cParams.splitDistances[1]->getValue(idx), 2), 0.5);
sf->setValue(idx, d2D);
}
sf->computeMinAndMax();
}
}
}
else
{
ccLog::Error("[ComputeDistances] Error (%i)",result);
m_compCloud->deleteScalarField(sfIdx);
m_compCloud->showSF(false);
sfIdx = -1;
}
for (unsigned j = 0; j < 3; ++j)
{
CCCoreLib::ScalarField* &sf = c2cParams.splitDistances[j];
if (sf)
{
sf->release();
sf = nullptr;
}
}
updateDisplay(sfIdx >= 0, false);
return result >= 0;
}