Skip to content

Latest commit

 

History

History
 
 

framework

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Tensorflow training framework

Follow the example in dataset/mnist.py and model/convnet_classifier.py for examples of how to define custom datasets and models.

Install dependencies

pip install tensorflow numpy pillow matplotlib six

Preparing datasets

Currently the framework includes code for preprocessing mnist, cifar10, and cifar100 datasets.

To download and preprocess the mnist dataset run:

python -m dataset.mnist convert

Run the following to visualize an example:

python -m dataset.mnist visualize

In the above snippets you could replace mnist with cifar10 or cifar100 to preprocess the respective datasets.

Training

To train an mnist classification model run:

python -m main --model=convnet_classifier --dataset=mnist

To visualize the training logs on Tensorboard run:

tensorboard --logdir=output