forked from dop251/goja
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dtoa.go
290 lines (263 loc) · 5.58 KB
/
dtoa.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
package goja
// Ported from Rhino (https://github.com/mozilla/rhino/blob/master/src/org/mozilla/javascript/DToA.java)
import (
"bytes"
"fmt"
"math"
"math/big"
"strconv"
)
const (
frac_mask = 0xfffff
exp_shift = 20
exp_msk1 = 0x100000
exp_shiftL = 52
exp_mask_shifted = 0x7ff
frac_maskL = 0xfffffffffffff
exp_msk1L = 0x10000000000000
exp_shift1 = 20
exp_mask = 0x7ff00000
bias = 1023
p = 53
bndry_mask = 0xfffff
log2P = 1
digits = "0123456789abcdefghijklmnopqrstuvwxyz"
)
func lo0bits(x uint32) (k uint32) {
if (x & 7) != 0 {
if (x & 1) != 0 {
return 0
}
if (x & 2) != 0 {
return 1
}
return 2
}
if (x & 0xffff) == 0 {
k = 16
x >>= 16
}
if (x & 0xff) == 0 {
k += 8
x >>= 8
}
if (x & 0xf) == 0 {
k += 4
x >>= 4
}
if (x & 0x3) == 0 {
k += 2
x >>= 2
}
if (x & 1) == 0 {
k++
x >>= 1
if (x & 1) == 0 {
return 32
}
}
return
}
func hi0bits(x uint32) (k uint32) {
if (x & 0xffff0000) == 0 {
k = 16
x <<= 16
}
if (x & 0xff000000) == 0 {
k += 8
x <<= 8
}
if (x & 0xf0000000) == 0 {
k += 4
x <<= 4
}
if (x & 0xc0000000) == 0 {
k += 2
x <<= 2
}
if (x & 0x80000000) == 0 {
k++
if (x & 0x40000000) == 0 {
return 32
}
}
return
}
func stuffBits(bits []byte, offset int, val uint32) {
bits[offset] = byte(val >> 24)
bits[offset+1] = byte(val >> 16)
bits[offset+2] = byte(val >> 8)
bits[offset+3] = byte(val)
}
func d2b(d float64) (b *big.Int, e int32, bits uint32) {
dBits := math.Float64bits(d)
d0 := uint32(dBits >> 32)
d1 := uint32(dBits)
z := d0 & frac_mask
d0 &= 0x7fffffff /* clear sign bit, which we ignore */
var de, k, i uint32
var dbl_bits []byte
if de = (d0 >> exp_shift); de != 0 {
z |= exp_msk1
}
y := d1
if y != 0 {
dbl_bits = make([]byte, 8)
k = lo0bits(y)
y >>= k
if k != 0 {
stuffBits(dbl_bits, 4, y|z<<(32-k))
z >>= k
} else {
stuffBits(dbl_bits, 4, y)
}
stuffBits(dbl_bits, 0, z)
if z != 0 {
i = 2
} else {
i = 1
}
} else {
dbl_bits = make([]byte, 4)
k = lo0bits(z)
z >>= k
stuffBits(dbl_bits, 0, z)
k += 32
i = 1
}
if de != 0 {
e = int32(de - bias - (p - 1) + k)
bits = p - k
} else {
e = int32(de - bias - (p - 1) + 1 + k)
bits = 32*i - hi0bits(z)
}
b = (&big.Int{}).SetBytes(dbl_bits)
return
}
func dtobasestr(num float64, radix int) string {
var negative bool
if num < 0 {
num = -num
negative = true
}
dfloor := math.Floor(num)
ldfloor := int64(dfloor)
var intDigits string
if dfloor == float64(ldfloor) {
if negative {
ldfloor = -ldfloor
}
intDigits = strconv.FormatInt(ldfloor, radix)
} else {
floorBits := math.Float64bits(num)
exp := int(floorBits>>exp_shiftL) & exp_mask_shifted
var mantissa int64
if exp == 0 {
mantissa = int64((floorBits & frac_maskL) << 1)
} else {
mantissa = int64((floorBits & frac_maskL) | exp_msk1L)
}
if negative {
mantissa = -mantissa
}
exp -= 1075
x := big.NewInt(mantissa)
if exp > 0 {
x.Lsh(x, uint(exp))
} else if exp < 0 {
x.Rsh(x, uint(-exp))
}
intDigits = x.Text(radix)
}
if num == dfloor {
// No fraction part
return intDigits
} else {
/* We have a fraction. */
var buffer bytes.Buffer
buffer.WriteString(intDigits)
buffer.WriteByte('.')
df := num - dfloor
dBits := math.Float64bits(num)
word0 := uint32(dBits >> 32)
word1 := uint32(dBits)
b, e, _ := d2b(df)
// JS_ASSERT(e < 0);
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
s2 := -int32((word0 >> exp_shift1) & (exp_mask >> exp_shift1))
if s2 == 0 {
s2 = -1
}
s2 += bias + p
/* 1/2^s2 = (nextDouble(d) - d)/2 */
// JS_ASSERT(-s2 < e);
if -s2 >= e {
panic(fmt.Errorf("-s2 >= e: %d, %d", -s2, e))
}
mlo := big.NewInt(1)
mhi := mlo
if (word1 == 0) && ((word0 & bndry_mask) == 0) && ((word0 & (exp_mask & exp_mask << 1)) != 0) {
/* The special case. Here we want to be within a quarter of the last input
significant digit instead of one half of it when the output string's value is less than d. */
s2 += log2P
mhi = big.NewInt(1 << log2P)
}
b.Lsh(b, uint(e+s2))
s := big.NewInt(1)
s.Lsh(s, uint(s2))
/* At this point we have the following:
* s = 2^s2;
* 1 > df = b/2^s2 > 0;
* (d - prevDouble(d))/2 = mlo/2^s2;
* (nextDouble(d) - d)/2 = mhi/2^s2. */
bigBase := big.NewInt(int64(radix))
done := false
m := &big.Int{}
delta := &big.Int{}
for !done {
b.Mul(b, bigBase)
b.DivMod(b, s, m)
digit := byte(b.Int64())
b, m = m, b
mlo.Mul(mlo, bigBase)
if mlo != mhi {
mhi.Mul(mhi, bigBase)
}
/* Do we yet have the shortest string that will round to d? */
j := b.Cmp(mlo)
/* j is b/2^s2 compared with mlo/2^s2. */
delta.Sub(s, mhi)
var j1 int
if delta.Sign() <= 0 {
j1 = 1
} else {
j1 = b.Cmp(delta)
}
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
if j1 == 0 && (word1&1) == 0 {
if j > 0 {
digit++
}
done = true
} else if j < 0 || (j == 0 && ((word1 & 1) == 0)) {
if j1 > 0 {
/* Either dig or dig+1 would work here as the least significant digit.
Use whichever would produce an output value closer to d. */
b.Lsh(b, 1)
j1 = b.Cmp(s)
if j1 > 0 { /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output such as 3.5 in base 3. */
digit++
}
}
done = true
} else if j1 > 0 {
digit++
done = true
}
// JS_ASSERT(digit < (uint32)base);
buffer.WriteByte(digits[digit])
}
return buffer.String()
}
}