forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_doc_auto_generation.py
365 lines (300 loc) · 14.1 KB
/
test_doc_auto_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from docs import autogen
import pytest
test_doc1 = {
'doc': """Base class for recurrent layers.
# Arguments
cell: A RNN cell instance. A RNN cell is a class that has:
- a `call(input_at_t, states_at_t)` method, returning
`(output_at_t, states_at_t_plus_1)`. The call method of the
cell can also take the optional argument `constants`, see
section "Note on passing external constants" below.
- a `state_size` attribute. This can be a single integer
(single state) in which case it is
the size of the recurrent state
(which should be the same as the size of the cell output).
This can also be a list/tuple of integers
(one size per state). In this case, the first entry
(`state_size[0]`) should be the same as
the size of the cell output.
It is also possible for `cell` to be a list of RNN cell instances,
in which cases the cells get stacked on after the other in the RNN,
implementing an efficient stacked RNN.
return_sequences: Boolean. Whether to return the last output
in the output sequence, or the full sequence.
return_state: Boolean. Whether to return the last state
in addition to the output.
go_backwards: Boolean (default False).
If True, process the input sequence backwards and return the
reversed sequence.
stateful: Boolean (default False). If True, the last state
for each sample at index i in a batch will be used as initial
state for the sample of index i in the following batch.
unroll: Boolean (default False).
If True, the network will be unrolled,
else a symbolic loop will be used.
Unrolling can speed-up a RNN,
although it tends to be more memory-intensive.
Unrolling is only suitable for short sequences.
input_dim: dimensionality of the input (integer).
This argument (or alternatively,
the keyword argument `input_shape`)
is required when using this layer as the first layer in a model.
input_length: Length of input sequences, to be specified
when it is constant.
This argument is required if you are going to connect
`Flatten` then `Dense` layers upstream
(without it, the shape of the dense outputs cannot be computed).
Note that if the recurrent layer is not the first layer
in your model, you would need to specify the input length
at the level of the first layer
(e.g. via the `input_shape` argument)
# Input shape
3D tensor with shape `(batch_size, timesteps, input_dim)`.
# Output shape
- if `return_state`: a list of tensors. The first tensor is
the output. The remaining tensors are the last states,
each with shape `(batch_size, units)`.
- if `return_sequences`: 3D tensor with shape
`(batch_size, timesteps, units)`.
- else, 2D tensor with shape `(batch_size, units)`.
# Masking
This layer supports masking for input data with a variable number
of timesteps. To introduce masks to your data,
use an [Embedding](embeddings.md) layer with the `mask_zero` parameter
set to `True`.
# Note on using statefulness in RNNs
You can set RNN layers to be 'stateful', which means that the states
computed for the samples in one batch will be reused as initial states
for the samples in the next batch. This assumes a one-to-one mapping
between samples in different successive batches.
To enable statefulness:
- specify `stateful=True` in the layer constructor.
- specify a fixed batch size for your model, by passing
if sequential model:
`batch_input_shape=(...)` to the first layer in your model.
else for functional model with 1 or more Input layers:
`batch_shape=(...)` to all the first layers in your model.
This is the expected shape of your inputs
*including the batch size*.
It should be a tuple of integers, e.g. `(32, 10, 100)`.
- specify `shuffle=False` when calling fit().
To reset the states of your model, call `.reset_states()` on either
a specific layer, or on your entire model.
# Note on specifying the initial state of RNNs
Note: that
One: You can specify the initial state of RNN layers symbolically by
calling them with the keyword argument `initial_state`.
Two: The value of `initial_state` should be a tensor or list of
tensors representing
the initial state of the RNN layer.
You can specify the initial state of RNN layers numerically by:
One: calling `reset_states`
- With the keyword argument `states`.
- The value of
`states` should be a numpy array or
list of numpy arrays representing
the initial state of the RNN layer.
# Note on passing external constants to RNNs
You can pass "external" constants to the cell using the `constants`
keyword: argument of `RNN.__call__` (as well as `RNN.call`) method.
This: requires that the `cell.call` method accepts the same keyword argument
`constants`. Such constants can be used to condition the cell
transformation on additional static inputs (not changing over time),
a.k.a. an attention mechanism.
# Examples
```python
# First, let's define a RNN Cell, as a layer subclass.
class MinimalRNNCell(keras.layers.Layer):
def __init__(self, units, **kwargs):
self.units = units
self.state_size = units
super(MinimalRNNCell, self).__init__(**kwargs)
def build(self, input_shape):
self.kernel = self.add_weight(shape=(input_shape[-1], self.units),
initializer='uniform',
name='kernel')
self.recurrent_kernel = self.add_weight(
shape=(self.units, self.units),
initializer='uniform',
name='recurrent_kernel')
self.built = True
def call(self, inputs, states):
prev_output = states[0]
h = K.dot(inputs, self.kernel)
output = h + K.dot(prev_output, self.recurrent_kernel)
return output, [output]
# Let's use this cell in a RNN layer:
cell = MinimalRNNCell(32)
x = keras.Input((None, 5))
layer = RNN(cell)
y = layer(x)
# Here's how to use the cell to build a stacked RNN:
cells = [MinimalRNNCell(32), MinimalRNNCell(64)]
x = keras.Input((None, 5))
layer = RNN(cells)
y = layer(x)
```
""",
'result': '''Base class for recurrent layers.
__Arguments__
- __cell__: A RNN cell instance. A RNN cell is a class that has:
- a `call(input_at_t, states_at_t)` method, returning
`(output_at_t, states_at_t_plus_1)`. The call method of the
cell can also take the optional argument `constants`, see
section "Note on passing external constants" below.
- a `state_size` attribute. This can be a single integer
(single state) in which case it is
the size of the recurrent state
(which should be the same as the size of the cell output).
This can also be a list/tuple of integers
(one size per state). In this case, the first entry
(`state_size[0]`) should be the same as
the size of the cell output.
It is also possible for `cell` to be a list of RNN cell instances,
in which cases the cells get stacked on after the other in the RNN,
implementing an efficient stacked RNN.
- __return_sequences__: Boolean. Whether to return the last output
in the output sequence, or the full sequence.
- __return_state__: Boolean. Whether to return the last state
in addition to the output.
- __go_backwards__: Boolean (default False).
If True, process the input sequence backwards and return the
reversed sequence.
- __stateful__: Boolean (default False). If True, the last state
for each sample at index i in a batch will be used as initial
state for the sample of index i in the following batch.
- __unroll__: Boolean (default False).
If True, the network will be unrolled,
else a symbolic loop will be used.
Unrolling can speed-up a RNN,
although it tends to be more memory-intensive.
Unrolling is only suitable for short sequences.
- __input_dim__: dimensionality of the input (integer).
This argument (or alternatively,
the keyword argument `input_shape`)
is required when using this layer as the first layer in a model.
- __input_length__: Length of input sequences, to be specified
when it is constant.
This argument is required if you are going to connect
`Flatten` then `Dense` layers upstream
(without it, the shape of the dense outputs cannot be computed).
Note that if the recurrent layer is not the first layer
in your model, you would need to specify the input length
at the level of the first layer
(e.g. via the `input_shape` argument)
__Input shape__
3D tensor with shape `(batch_size, timesteps, input_dim)`.
__Output shape__
- if `return_state`: a list of tensors. The first tensor is
the output. The remaining tensors are the last states,
each with shape `(batch_size, units)`.
- if `return_sequences`: 3D tensor with shape
`(batch_size, timesteps, units)`.
- else, 2D tensor with shape `(batch_size, units)`.
__Masking__
This layer supports masking for input data with a variable number
of timesteps. To introduce masks to your data,
use an [Embedding](embeddings.md) layer with the `mask_zero` parameter
set to `True`.
__Note on using statefulness in RNNs__
You can set RNN layers to be 'stateful', which means that the states
computed for the samples in one batch will be reused as initial states
for the samples in the next batch. This assumes a one-to-one mapping
between samples in different successive batches.
To enable statefulness:
- specify `stateful=True` in the layer constructor.
- specify a fixed batch size for your model, by passing
if sequential model:
`batch_input_shape=(...)` to the first layer in your model.
else for functional model with 1 or more Input layers:
`batch_shape=(...)` to all the first layers in your model.
This is the expected shape of your inputs
*including the batch size*.
It should be a tuple of integers, e.g. `(32, 10, 100)`.
- specify `shuffle=False` when calling fit().
To reset the states of your model, call `.reset_states()` on either
a specific layer, or on your entire model.
__Note on specifying the initial state of RNNs__
Note: that
- __One__: You can specify the initial state of RNN layers symbolically by
calling them with the keyword argument `initial_state`.
- __Two__: The value of `initial_state` should be a tensor or list of
tensors representing
the initial state of the RNN layer.
You can specify the initial state of RNN layers numerically by:
- __One__: calling `reset_states`
- With the keyword argument `states`.
- The value of
`states` should be a numpy array or
list of numpy arrays representing
the initial state of the RNN layer.
__Note on passing external constants to RNNs__
You can pass "external" constants to the cell using the `constants`
- __keyword__: argument of `RNN.__call__` (as well as `RNN.call`) method.
- __This__: requires that the `cell.call` method accepts the same keyword argument
`constants`. Such constants can be used to condition the cell
transformation on additional static inputs (not changing over time),
a.k.a. an attention mechanism.
__Examples__
```python
# First, let's define a RNN Cell, as a layer subclass.
class MinimalRNNCell(keras.layers.Layer):
def __init__(self, units, **kwargs):
self.units = units
self.state_size = units
super(MinimalRNNCell, self).__init__(**kwargs)
def build(self, input_shape):
self.kernel = self.add_weight(shape=(input_shape[-1], self.units),
initializer='uniform',
name='kernel')
self.recurrent_kernel = self.add_weight(
shape=(self.units, self.units),
initializer='uniform',
name='recurrent_kernel')
self.built = True
def call(self, inputs, states):
prev_output = states[0]
h = K.dot(inputs, self.kernel)
output = h + K.dot(prev_output, self.recurrent_kernel)
return output, [output]
# Let's use this cell in a RNN layer:
cell = MinimalRNNCell(32)
x = keras.Input((None, 5))
layer = RNN(cell)
y = layer(x)
# Here's how to use the cell to build a stacked RNN:
cells = [MinimalRNNCell(32), MinimalRNNCell(64)]
x = keras.Input((None, 5))
layer = RNN(cells)
y = layer(x)
```
'''}
def test_doc_lists():
docstring = autogen.process_docstring(test_doc1['doc'])
assert docstring == test_doc1['result']
dummy_docstring = """Multiplies 2 tensors (and/or variables) and returns a *tensor*.
When attempting to multiply a nD tensor
with a nD tensor, it reproduces the Theano behavior.
(e.g. `(2, 3) * (4, 3, 5) -> (2, 4, 5)`)
# Examples
```python
# Theano-like behavior example
>>> x = K.random_uniform_variable(shape=(2, 3), low=0, high=1)
>>> y = K.ones((4, 3, 5))
>>> xy = K.dot(x, y)
>>> K.int_shape(xy)
(2, 4, 5)
```
# Numpy implementation
```python
def dot(x, y):
return dot(x, y)
```
"""
def test_doc_multiple_sections_code():
""" Checks that we can have code blocks in multiple sections."""
generated = autogen.process_docstring(dummy_docstring)
assert '# Theano-like behavior example' in generated
assert 'def dot(x, y):' in generated
if __name__ == '__main__':
pytest.main([__file__])