forked from ai-forever/ru-gpts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_pt_utils.py
363 lines (288 loc) · 15 KB
/
trainer_pt_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Torch utilities for the Trainer class.
"""
import math
import warnings
from contextlib import contextmanager
from typing import List, Optional, Union
import numpy as np
import torch
from packaging import version
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler, Sampler
from .file_utils import is_torch_tpu_available
from .utils import logging
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
if version.parse(torch.__version__) <= version.parse("1.4.1"):
SAVE_STATE_WARNING = ""
else:
# from torch.optim.lr_scheduler import SAVE_STATE_WARNING
SAVE_STATE_WARNING = ""
logger = logging.get_logger(__name__)
def torch_pad_and_concatenate(tensor1, tensor2, padding_index=-100):
"""Concatenates `tensor1` and `tensor2` on first axis, applying padding on the second if necessary."""
if len(tensor1.shape) == 1 or tensor1.shape[1] == tensor2.shape[1]:
return torch.cat((tensor1, tensor2), dim=0)
# Let's figure out the new shape
new_shape = (tensor1.shape[0] + tensor2.shape[0], max(tensor1.shape[1], tensor2.shape[1])) + tensor1.shape[2:]
# Now let's fill the result tensor
result = tensor1.new_full(new_shape, padding_index)
result[: tensor1.shape[0], : tensor1.shape[1]] = tensor1
result[tensor1.shape[0] :, : tensor2.shape[1]] = tensor2
return result
def numpy_pad_and_concatenate(array1, array2, padding_index=-100):
"""Concatenates `array1` and `array2` on first axis, applying padding on the second if necessary."""
if len(array1.shape) == 1 or array1.shape[1] == array2.shape[1]:
return np.concatenate((array1, array2), dim=0)
# Let's figure out the new shape
new_shape = (array1.shape[0] + array2.shape[0], max(array1.shape[1], array2.shape[1])) + array1.shape[2:]
# Now let's fill the result tensor
result = np.full_like(array1, padding_index, shape=new_shape)
result[: array1.shape[0], : array1.shape[1]] = array1
result[array1.shape[0] :, : array2.shape[1]] = array2
return result
def nested_concat(tensors, new_tensors, padding_index=-100):
"""
Concat the `new_tensors` to `tensors` on the first dim and pad them on the second if needed. Works for tensors or
nested list/tuples of tensors.
"""
assert type(tensors) == type(
new_tensors
), f"Expected `tensors` and `new_tensors` to have the same type but found {type(tensors)} and {type(new_tensors)}."
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_concat(t, n, padding_index=padding_index) for t, n in zip(tensors, new_tensors))
elif isinstance(tensors, torch.Tensor):
return torch_pad_and_concatenate(tensors, new_tensors, padding_index=padding_index)
elif isinstance(tensors, np.ndarray):
return numpy_pad_and_concatenate(tensors, new_tensors, padding_index=padding_index)
else:
raise TypeError(f"Unsupported type for concatenation: got {type(tensors)}")
def nested_numpify(tensors):
"Numpify `tensors` (even if it's a nested list/tuple of tensors)."
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_numpify(t) for t in tensors)
return tensors.cpu().numpy()
def nested_detach(tensors):
"Detach `tensors` (even if it's a nested list/tuple of tensors)."
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_detach(t) for t in tensors)
return tensors.detach()
def nested_xla_mesh_reduce(tensors, name):
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_xla_mesh_reduce(t, f"{name}_{i}") for i, t in enumerate(tensors))
return xm.mesh_reduce(name, tensors, torch.cat)
else:
raise ImportError("Torch xla must be installed to use `nested_xla_mesh_reduce`")
def distributed_concat(tensor: "torch.Tensor", num_total_examples: Optional[int] = None) -> torch.Tensor:
try:
if isinstance(tensor, (tuple, list)):
return type(tensor)(distributed_concat(t, num_total_examples) for t in tensor)
output_tensors = [tensor.clone() for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(output_tensors, tensor)
concat = torch.cat(output_tensors, dim=0)
# truncate the dummy elements added by SequentialDistributedSampler
if num_total_examples is not None:
concat = concat[:num_total_examples]
return concat
except AssertionError:
raise AssertionError("Not currently using distributed training")
def distributed_broadcast_scalars(
scalars: List[Union[int, float]], num_total_examples: Optional[int] = None
) -> torch.Tensor:
try:
tensorized_scalar = torch.tensor(scalars).cuda()
output_tensors = [tensorized_scalar.clone() for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(output_tensors, tensorized_scalar)
concat = torch.cat(output_tensors, dim=0)
# truncate the dummy elements added by SequentialDistributedSampler
if num_total_examples is not None:
concat = concat[:num_total_examples]
return concat
except AssertionError:
raise AssertionError("Not currently using distributed training")
def reissue_pt_warnings(caught_warnings):
# Reissue warnings that are not the SAVE_STATE_WARNING
if len(caught_warnings) > 1:
for w in caught_warnings:
if w.category != UserWarning or w.message != SAVE_STATE_WARNING:
warnings.warn(w.message, w.category)
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""
Decorator to make all processes in distributed training wait for each local_master to do something.
Args:
local_rank (:obj:`int`): The rank of the local process.
"""
if local_rank not in [-1, 0]:
torch.distributed.barrier()
yield
if local_rank == 0:
torch.distributed.barrier()
class SequentialDistributedSampler(Sampler):
"""
Distributed Sampler that subsamples indices sequentially, making it easier to collate all results at the end.
Even though we only use this sampler for eval and predict (no training), which means that the model params won't
have to be synced (i.e. will not hang for synchronization even if varied number of forward passes), we still add
extra samples to the sampler to make it evenly divisible (like in `DistributedSampler`) to make it easy to `gather`
or `reduce` resulting tensors at the end of the loop.
"""
def __init__(self, dataset, num_replicas=None, rank=None):
if num_replicas is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = torch.distributed.get_world_size()
if rank is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = torch.distributed.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
assert (
len(indices) == self.total_size
), f"Indices length {len(indices)} and total size {self.total_size} mismatched"
# subsample
indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
assert (
len(indices) == self.num_samples
), f"Indices length {len(indices)} and sample number {self.num_samples} mismatched"
return iter(indices)
def __len__(self):
return self.num_samples
def get_tpu_sampler(dataset: torch.utils.data.dataset.Dataset):
if xm.xrt_world_size() <= 1:
return RandomSampler(dataset)
return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
def nested_new_like(arrays, num_samples, padding_index=-100):
""" Create the same nested structure as `arrays` with a first dimension always at `num_samples`."""
if isinstance(arrays, (list, tuple)):
return type(arrays)(nested_new_like(x, num_samples) for x in arrays)
return np.full_like(arrays, padding_index, shape=(num_samples, *arrays.shape[1:]))
def nested_expand_like(arrays, new_seq_length, padding_index=-100):
""" Expand the `arrays` so that the second dimension grows to `new_seq_length`. Uses `padding_index` for padding."""
if isinstance(arrays, (list, tuple)):
return type(arrays)(nested_expand_like(x, new_seq_length, padding_index=padding_index) for x in arrays)
result = np.full_like(arrays, padding_index, shape=(arrays.shape[0], new_seq_length) + arrays.shape[2:])
result[:, : arrays.shape[1]] = arrays
return result
def nested_truncate(tensors, limit):
"Truncate `tensors` at `limit` (even if it's a nested list/tuple of tensors)."
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_truncate(t, limit) for t in tensors)
return tensors[:limit]
def _get_first_shape(arrays):
"""Return the shape of the first array found in the nested struct `arrays`."""
if isinstance(arrays, (list, tuple)):
return _get_first_shape(arrays[0])
return arrays.shape
class DistributedTensorGatherer:
"""
A class responsible for properly gathering tensors (or nested list/tuple of tensors) on the CPU by chunks.
If our dataset has 16 samples with a batch size of 2 on 3 processes and we gather then transfer on CPU at every
step, our sampler will generate the following indices:
:obj:`[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1]`
to get something of size a multiple of 3 (so that each process gets the same dataset length). Then process 0, 1 and
2 will be responsible of making predictions for the following samples:
- P0: :obj:`[0, 1, 2, 3, 4, 5]`
- P1: :obj:`[6, 7, 8, 9, 10, 11]`
- P2: :obj:`[12, 13, 14, 15, 0, 1]`
The first batch treated on each process will be
- P0: :obj:`[0, 1]`
- P1: :obj:`[6, 7]`
- P2: :obj:`[12, 13]`
So if we gather at the end of the first batch, we will get a tensor (nested list/tuple of tensor) corresponding to
the following indices:
:obj:`[0, 1, 6, 7, 12, 13]`
If we directly concatenate our results without taking any precautions, the user will then get the predictions for
the indices in this order at the end of the prediction loop:
:obj:`[0, 1, 6, 7, 12, 13, 2, 3, 8, 9, 14, 15, 4, 5, 10, 11, 0, 1]`
For some reason, that's not going to roll their boat. This class is there to solve that problem.
Args:
world_size (:obj:`int`):
The number of processes used in the distributed training.
num_samples (:obj:`int`):
The number of samples in our dataset.
make_multiple_of (:obj:`int`, `optional`):
If passed, the class assumes the datasets passed to each process are made to be a multiple of this argument
(by adding samples).
padding_index (:obj:`int`, `optional`, defaults to -100):
The padding index to use if the arrays don't all have the same sequence length.
"""
def __init__(self, world_size, num_samples, make_multiple_of=None, padding_index=-100):
self.world_size = world_size
self.num_samples = num_samples
total_size = world_size if make_multiple_of is None else world_size * make_multiple_of
self.total_samples = int(np.ceil(num_samples / total_size)) * total_size
self.process_length = self.total_samples // world_size
self._storage = None
self._offsets = None
self.padding_index = padding_index
def add_arrays(self, arrays):
"""
Add :obj:`arrays` to the internal storage, Will initialize the storage to the full size at the first arrays
passed so that if we're bound to get an OOM, it happens at the beginning.
"""
if arrays is None:
return
if self._storage is None:
self._storage = nested_new_like(arrays, self.total_samples, padding_index=self.padding_index)
self._offsets = list(range(0, self.total_samples, self.process_length))
else:
storage_shape = _get_first_shape(self._storage)
arrays_shape = _get_first_shape(arrays)
if len(storage_shape) > 1 and storage_shape[1] < arrays_shape[1]:
# If we get new arrays that are too big too fit, we expand the shape fo the storage
self._storage = nested_expand_like(self._storage, arrays_shape[1], padding_index=self.padding_index)
slice_len = self._nested_set_tensors(self._storage, arrays)
for i in range(self.world_size):
self._offsets[i] += slice_len
def _nested_set_tensors(self, storage, arrays):
if isinstance(arrays, (list, tuple)):
for x, y in zip(storage, arrays):
slice_len = self._nested_set_tensors(x, y)
return slice_len
assert (
arrays.shape[0] % self.world_size == 0
), f"Arrays passed should all have a first dimension multiple of {self.world_size}, found {arrays.shape[0]}."
slice_len = arrays.shape[0] // self.world_size
for i in range(self.world_size):
if len(arrays.shape) == 1:
storage[self._offsets[i] : self._offsets[i] + slice_len] = arrays[i * slice_len : (i + 1) * slice_len]
else:
storage[self._offsets[i] : self._offsets[i] + slice_len, : arrays.shape[1]] = arrays[
i * slice_len : (i + 1) * slice_len
]
return slice_len
def finalize(self):
"""
Return the properly gathered arrays and truncate to the number of samples (since the sampler added some extras
to get each process a dataset of the same length).
"""
if self._storage is None:
return
if self._offsets[0] != self.process_length:
logger.warn("Not all data has been set. Are you sure you passed all values?")
return nested_truncate(self._storage, self.num_samples)