forked from ilarinieminen/SOM-Toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrbfprior.m
54 lines (49 loc) · 1.97 KB
/
rbfprior.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
function [mask, prior] = rbfprior(rbfunc, nin, nhidden, nout, aw2, ab2)
%RBFPRIOR Create Gaussian prior and output layer mask for RBF.
%
% Description
% [MASK, PRIOR] = RBFPRIOR(RBFUNC, NIN, NHIDDEN, NOUT, AW2, AB2)
% generates a vector MASK that selects only the output layer weights.
% This is because most uses of RBF networks in a Bayesian context have
% fixed basis functions with the output layer as the only adjustable
% parameters. In particular, the Neuroscale output error function is
% designed to work only with this mask.
%
% The return value PRIOR is a data structure, with fields PRIOR.ALPHA
% and PRIOR.INDEX, which specifies a Gaussian prior distribution for
% the network weights in an RBF network. The parameters AW2 and AB2 are
% all scalars and represent the regularization coefficients for two
% groups of parameters in the network corresponding to second-layer
% weights, and second-layer biases respectively. Then PRIOR.ALPHA
% represents a column vector of length 2 containing the parameters, and
% PRIOR.INDEX is a matrix specifying which weights belong in each
% group. Each column has one element for each weight in the matrix,
% using the standard ordering as defined in RBFPAK, and each element is
% 1 or 0 according to whether the weight is a member of the
% corresponding group or not.
%
% See also
% RBF, RBFERR, RBFGRAD, EVIDENCE
%
% Copyright (c) Ian T Nabney (1996-2001)
nwts_layer2 = nout + (nhidden *nout);
switch rbfunc
case 'gaussian'
nwts_layer1 = nin*nhidden + nhidden;
case {'tps', 'r4logr'}
nwts_layer1 = nin*nhidden;
otherwise
error('Undefined activation function');
end
nwts = nwts_layer1 + nwts_layer2;
% Make a mask only for output layer
mask = [zeros(nwts_layer1, 1); ones(nwts_layer2, 1)];
if nargout > 1
% Construct prior
indx = zeros(nwts, 2);
mark2 = nwts_layer1 + (nhidden * nout);
indx(nwts_layer1 + 1:mark2, 1) = ones(nhidden * nout, 1);
indx(mark2 + 1:nwts, 2) = ones(nout, 1);
prior.index = indx;
prior.alpha = [aw2, ab2]';
end