forked from tesseract-ocr/tesseract
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcntraining.cpp
245 lines (226 loc) · 8.81 KB
/
cntraining.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/******************************************************************************
** Filename: cntraining.cpp
** Purpose: Generates a normproto and pffmtable.
** Author: Dan Johnson
** Revisment: Christy Russon
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
/*----------------------------------------------------------------------------
Include Files and Type Defines
----------------------------------------------------------------------------*/
#include <tesseract/unichar.h>
#include <cmath>
#include <cstdio>
#include <cstring>
#include "cluster.h"
#include "clusttool.h"
#include "commontraining.h"
#include "featdefs.h"
#include "ocrfeatures.h"
#include "oldlist.h"
#define PROGRAM_FEATURE_TYPE "cn"
using namespace tesseract;
/*----------------------------------------------------------------------------
Private Function Prototypes
----------------------------------------------------------------------------*/
static void WriteNormProtos(const char *Directory, LIST LabeledProtoList,
const FEATURE_DESC_STRUCT *feature_desc);
static void WriteProtos(FILE *File, uint16_t N, LIST ProtoList, bool WriteSigProtos,
bool WriteInsigProtos);
/*----------------------------------------------------------------------------
Global Data Definitions and Declarations
----------------------------------------------------------------------------*/
/* global variable to hold configuration parameters to control clustering */
//-M 0.025 -B 0.05 -I 0.8 -C 1e-3
static const CLUSTERCONFIG CNConfig = {elliptical, 0.025, 0.05, 0.8, 1e-3, 0};
/*----------------------------------------------------------------------------
Public Code
----------------------------------------------------------------------------*/
/**
* This program reads in a text file consisting of feature
* samples from a training page in the following format:
* @verbatim
FontName CharName NumberOfFeatureTypes(N)
FeatureTypeName1 NumberOfFeatures(M)
Feature1
...
FeatureM
FeatureTypeName2 NumberOfFeatures(M)
Feature1
...
FeatureM
...
FeatureTypeNameN NumberOfFeatures(M)
Feature1
...
FeatureM
FontName CharName ...
@endverbatim
* It then appends these samples into a separate file for each
* character. The name of the file is
*
* DirectoryName/FontName/CharName.FeatureTypeName
*
* The DirectoryName can be specified via a command
* line argument. If not specified, it defaults to the
* current directory. The format of the resulting files is:
* @verbatim
NumberOfFeatures(M)
Feature1
...
FeatureM
NumberOfFeatures(M)
...
@endverbatim
* The output files each have a header which describes the
* type of feature which the file contains. This header is
* in the format required by the clusterer. A command line
* argument can also be used to specify that only the first
* N samples of each class should be used.
* @param argc number of command line arguments
* @param argv array of command line arguments
* @return 0 on success
*/
int main(int argc, char *argv[]) {
tesseract::CheckSharedLibraryVersion();
// Set the global Config parameters before parsing the command line.
Config = CNConfig;
LIST CharList = NIL_LIST;
CLUSTERER *Clusterer = nullptr;
LIST ProtoList = NIL_LIST;
LIST NormProtoList = NIL_LIST;
LIST pCharList;
LABELEDLIST CharSample;
FEATURE_DEFS_STRUCT FeatureDefs;
InitFeatureDefs(&FeatureDefs);
ParseArguments(&argc, &argv);
#if !defined(NDEBUG)
int num_fonts = 0;
#endif
for (const char *PageName = *++argv; PageName != nullptr; PageName = *++argv) {
printf("Reading %s ...\n", PageName);
FILE *TrainingPage = fopen(PageName, "rb");
ASSERT_HOST(TrainingPage);
if (TrainingPage) {
ReadTrainingSamples(FeatureDefs, PROGRAM_FEATURE_TYPE, 100, nullptr, TrainingPage, &CharList);
fclose(TrainingPage);
#if !defined(NDEBUG)
++num_fonts;
#endif
}
}
printf("Clustering ...\n");
// To allow an individual font to form a separate cluster,
// reduce the min samples:
// Config.MinSamples = 0.5 / num_fonts;
pCharList = CharList;
// The norm protos will count the source protos, so we keep them here in
// freeable_protos, so they can be freed later.
std::vector<LIST> freeable_protos;
iterate(pCharList) {
// Cluster
CharSample = reinterpret_cast<LABELEDLIST>(pCharList->first_node());
Clusterer = SetUpForClustering(FeatureDefs, CharSample, PROGRAM_FEATURE_TYPE);
if (Clusterer == nullptr) { // To avoid a SIGSEGV
fprintf(stderr, "Error: nullptr clusterer!\n");
return EXIT_FAILURE;
}
float SavedMinSamples = Config.MinSamples;
// To disable the tendency to produce a single cluster for all fonts,
// make MagicSamples an impossible to achieve number:
// Config.MagicSamples = CharSample->SampleCount * 10;
Config.MagicSamples = CharSample->SampleCount;
while (Config.MinSamples > 0.001) {
ProtoList = ClusterSamples(Clusterer, &Config);
if (NumberOfProtos(ProtoList, true, false) > 0) {
break;
} else {
Config.MinSamples *= 0.95;
printf(
"0 significant protos for %s."
" Retrying clustering with MinSamples = %f%%\n",
CharSample->Label.c_str(), Config.MinSamples);
}
}
Config.MinSamples = SavedMinSamples;
AddToNormProtosList(&NormProtoList, ProtoList, CharSample->Label);
freeable_protos.push_back(ProtoList);
FreeClusterer(Clusterer);
}
FreeTrainingSamples(CharList);
int desc_index = ShortNameToFeatureType(FeatureDefs, PROGRAM_FEATURE_TYPE);
WriteNormProtos(FLAGS_D.c_str(), NormProtoList, FeatureDefs.FeatureDesc[desc_index]);
FreeNormProtoList(NormProtoList);
for (auto &freeable_proto : freeable_protos) {
FreeProtoList(&freeable_proto);
}
printf("\n");
return EXIT_SUCCESS;
} // main
/*----------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/**
* This routine writes the specified samples into files which
* are organized according to the font name and character name
* of the samples.
* @param Directory directory to place sample files into
* @param LabeledProtoList List of labeled protos
* @param feature_desc Description of the features
*/
static void WriteNormProtos(const char *Directory, LIST LabeledProtoList,
const FEATURE_DESC_STRUCT *feature_desc) {
FILE *File;
LABELEDLIST LabeledProto;
int N;
std::string Filename = "";
if (Directory != nullptr && Directory[0] != '\0') {
Filename += Directory;
Filename += "/";
}
Filename += "normproto";
printf("\nWriting %s ...", Filename.c_str());
File = fopen(Filename.c_str(), "wb");
ASSERT_HOST(File);
fprintf(File, "%0d\n", feature_desc->NumParams);
WriteParamDesc(File, feature_desc->NumParams, feature_desc->ParamDesc);
iterate(LabeledProtoList) {
LabeledProto = reinterpret_cast<LABELEDLIST>(LabeledProtoList->first_node());
N = NumberOfProtos(LabeledProto->List, true, false);
if (N < 1) {
printf(
"\nError! Not enough protos for %s: %d protos"
" (%d significant protos"
", %d insignificant protos)\n",
LabeledProto->Label.c_str(), N, NumberOfProtos(LabeledProto->List, true, false),
NumberOfProtos(LabeledProto->List, false, true));
exit(1);
}
fprintf(File, "\n%s %d\n", LabeledProto->Label.c_str(), N);
WriteProtos(File, feature_desc->NumParams, LabeledProto->List, true, false);
}
fclose(File);
} // WriteNormProtos
/*-------------------------------------------------------------------------*/
static void WriteProtos(FILE *File, uint16_t N, LIST ProtoList, bool WriteSigProtos,
bool WriteInsigProtos) {
PROTOTYPE *Proto;
// write prototypes
iterate(ProtoList) {
Proto = reinterpret_cast<PROTOTYPE *>(ProtoList->first_node());
if ((Proto->Significant && WriteSigProtos) || (!Proto->Significant && WriteInsigProtos)) {
WritePrototype(File, N, Proto);
}
}
} // WriteProtos