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Coordinate Descent

Goal: Find x? ∈ Rd minimizing f(x). (Example: d = 2)

x?

x1

x2

Idea: Update one coordinate at a time, while keeping others fixed.
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Coordinate Descent

Modify only one coordinate per step:

select it ∈ [d]

xt+1 := xt + γeit

Two main variants:

I Gradient-based step-size:

xt+1 := xt − 1
L∇itf(xt) eit

I Exact coordinate minimization: solve the single-variable
minimization argminγ∈R f(xt + γeit) in closed form.
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Randomized Coordinate Descent

select it ∈ [d] uniformly at random

xt+1 := xt − 1
L∇itf(xt) eit

I Faster convergence than gradient descent
(if coordinate step is significantly cheaper than full gradient
step)
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Convergence Analysis

Assume coordinate-wise smoothness:

f(x + γei) ≤ f(x) + γ∇if(x) +
L

2
γ2 ∀x ∈ Rd, ∀γ ∈ R, ∀i

Is equivalent to coordinate-wise Lipschitz gradient:
|∇if(x + γei)−∇if(x)| ≤ L|γ|, ∀x ∈ Rd, ∀γ ∈ R, ∀i.

I Additionally assume strong convexity
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Convergence Analysis: Linear Rate

Theorem

Let f be coordinate-wise smooth with constant L, and be strongly
convex with parameter µ > 0. Then, coordinate descent with a
step-size of 1/L,

xt+1 := xt − 1
L∇itf(xt) eit .

when choosing the active coordinate it uniformly at random, has
an expected linear convergence rate of

E[f(xt)− f?] ≤
(

1− µ

dL

)t
[f(x0)− f?].
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Convergence Proof

Proof.
Plugging the update rule, into the smoothness condition, we have

f(xt+1) ≤ f(xt)−
1

2L
|∇itf(xt)|2.

Take expectation with respect to it:

E [f(xt+1)] ≤ f(xt)−
1

2L
E
[
|∇itf(xt)|2

]
= f(xt)−

1

2L

1

d

∑
i

|∇if(xt)|2

= f(xt)−
1

2dL
‖∇f(xt)‖2.

[Lemma: strongly convex f satisfy 1
2‖∇f(x)‖2 ≥ µ(f(x)− f?) ∀x]

Subtracting f? from both sides, we therefore obtain

E[f(xt+1)− f?] ≤
(

1− µ

dL

)
[f(xt)− f?].
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The Polyak-Lojasiewicz Condition
Definition: f satisfies the Polyak-Lojasiewicz Inequality (PL) if
the following holds for some µ > 0,

1
2‖∇f(x)‖2 ≥ µ(f(x)− f?), ∀ x.

Lemma (Strong Convexity ⇒ PL)

Let f be strongly convex with parameter µ > 0. Then f satisfies
PL for the same µ.

Proof.
For all x and y we have

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖2 .

minimizing each side of the inequality with respect to y we obtain

f(x?) ≥ f(x)− 1

2µ
‖∇f(x)‖2.
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Linear Convergence without Strong Convexity

Examples satisfying PL:

I f(x) := g(Ax) for strongly convex g and arbitrary matrix A,
including least squares regression and many other applications
in machine learning.

Linear convergence for f satisfying the PL condition:

Corollary

For minimization of a function f which is coordinate-wise smooth
with constant L, satisfies the PL inequality, and has a non-empty
solution set X ?, random coordinate descent with a step-size of
1/L has the expected linear convergence rate of

E[f(xt)− f?] ≤
(

1− µ

dL

)t
[f(x0)− f?].
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Importance Sampling

Uniformly random selection is not always best!

I individual smoothness constants Li for each coordinate i

f(x + γei) ≤ f(x) + γ∇if(x) + Li
2 γ

2

Coordinate descent using this modified selection probabilities
P [it = i] = Li∑

i Li
, and using a step-size of 1/Lit converges

(Exercise 39) with the faster rate of

E[f(xt)− f?] ≤
(

1− µ

dL̄

)t
[f(x0)− f?],

where L̄ = 1
d

∑d
i=1 Li.

Often: L̄� L = maxi Li !
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Steepest Coordinate Descent

I Coordinate selection rule

it := argmax
i∈[d]

|∇if(xt)| .

“Greedy” or steepest coordinate descent.
Deterministic vs random.
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Convergence of Steepest Coordinate Descent

Has same convergence rate as for random coordinate descent!

Use

max
i
|∇if(x)|2 ≥ 1

d

∑
i

|∇if(x)|2 ,

(And: algorithm is deterministic, so no need to take expectations in the proof.)

Corollary

Steepest coordinate descent with a step-size of 1/L has the linear
convergence rate of

E[f(xt)− f?] ≤
(

1− µ

dL

)t
[f(x0)− f?].
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Faster Convergence of Steepest Coordinate Descent

Faster convergence can be obtained for this algorithm when the
strong convexity of f is measured with respect to the `1-norm
instead of the standard Euclidean norm, i.e.

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ1
2
‖y − x‖21 .

Theorem

If f is coordinate-wise L-smooth, and strongly convex w.r.t. the
`1-norm with parameter µ1 > 0, steepest coordinate descent with a
step-size of 1/L has the linear convergence rate of

E[f(xt)− f?] ≤
(

1− µ1
L

)t
[f(x0)− f?].
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Faster Convergence of Steepest Coordinate Descent

Proof: Same as above theorem, but using the following lemma
measuring the PL inequality in the `∞-norm:

Lemma

Let f be strongly convex w.r.t. the `1-norm with parameter
µ1 > 0. Then f satisfies

1
2 ‖∇f(x)‖2∞ ≥ µ1(f(x)− f?).

(Proof: omitted)
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Non-smooth objectives

Have proved everything for smooth f . What about non-smooth?

Figure: A smooth function: f(x) := ‖x‖2.
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Non-smooth objectives

For general non-smooth f , coordinate descent fails: gets
permanently stuck:

Figure: A non-smooth function: f(x) := ‖x‖2 + |x1 − x2|.
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Non-smooth separable objectives
What if the non-smooth part is separable over the coordinates?

f(x) := g(x) + h(x) with h(x) =
∑
i

hi(xi) ,

I global convergence!

Figure: A non-smooth but separable function: f(x) := ‖x‖2 + ‖x‖1.
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Applications

I Random coordinate descent
I is state-of-the-art for generalized linear models
f(x) := g(Ax) +

∑
i hi(xi).

Regression, classification (with different regularizers)

I Steepest coordinate descent
I Training with the help of GPUs

(or other hardware of limited memory):

Use steepest coordinates to decide which subset of the data A
to put onto the GPU.
→ DuHL algorithm used by IBM & NVIDIA. link1, link2

.
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https://blogs.nvidia.com/blog/2018/03/20/big-blue-touts-partnership-with-nvidia-at-ibm-think-confab/
https://www.zurich.ibm.com/snapml/

