forked from YongjieSi/AISP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
137 lines (112 loc) · 4.66 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import json
import random
import sys
import logging
import copy
import time
import torch
from utils import factory
from utils.data_manager_for_fscil import DataManager
from utils.toolkit import count_parameters
import os
from utils.averager import AverageMeter
import pandas as pd
import numpy as np
import pandas
def train(args):
seed_list = copy.deepcopy(args['seed'])
device = copy.deepcopy(args['device'])
final_out_dict = []
for seed in seed_list:
args["seed"] = seed
args["device"] = device
_set_device(args)
_train(args)
def _train(args):
try:
os.mkdir(".logs/{}".format(args['model_name']))
except:
pass
logfilename = '.logs/{}/{}_seed{}_{}_{}_{}_{}initcls_{}way_{}shot_bepochs{}_iepochs{}_blrate{}_ilrate{}'.format(args['model_name'], args['prefix'], args['seed'], args['convnet_type'], args['convnet_type'],
args['dataset'], args['init_cls'], args['increment'], args['shot'], args['init_epoch'], args['new_epochs'], args['init_lrate'], args['init_lrate'])
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(filename)s] => %(message)s',
handlers=[
logging.FileHandler(filename=logfilename + '.log'),
logging.StreamHandler(sys.stdout)
]
)
data_manager = DataManager(args['dataset'], args['shuffle'], args['seed'], args['init_cls'], args['increment'],args['shot'])
_set_random(args["seed"])
print_args(args)
model = factory.get_model(args['convnet_type'], args)
cnn_curve, nme_curve = {'top1': [], 'top5': []}, {'top1': [], 'top5': []}
sess_acc_dict = {}
sess_acc_per_class = {}
for task in range(args['nb_tasks']):
logging.info('All params: {}'.format(count_parameters(model._network)))
logging.info('Trainable params: {}'.format(count_parameters(model._network, True)))
nt_strat_time = time.time()
model.incremental_train(data_manager)
nt_end_time = time.time()
spend_time = nt_end_time - nt_strat_time
logging.info('Task{} spend {} seconds to train'.format(task, spend_time))
cnn_accy, nme_accy, acc_dict, cls_sample_count, acc_per_class = model.eval_task()
sess_acc_dict[f'sess {task}'] = acc_dict
sess_acc_per_class[f'sess {task}'] = acc_per_class
logging.info(f"sess {task} acc_dict:{acc_dict}")
logging.info(f"sess {task} acc_per_class: {acc_per_class}")
model.after_task()
if nme_accy is not None:
logging.info('CNN: {}'.format(cnn_accy['grouped']))
logging.info('NME: {}'.format(nme_accy['grouped']))
cnn_curve['top1'].append(cnn_accy['top1'])
nme_curve['top1'].append(nme_accy['top1'])
logging.info('CNN top1 curve: {}'.format(cnn_curve['top1']))
logging.info('NME top1 curve: {}'.format(nme_curve['top1']))
else:
logging.info('No NME accuracy.')
logging.info('CNN: {}'.format(cnn_accy['grouped']))
cnn_curve['top1'].append(cnn_accy['top1'])
logging.info('CNN top1 curve: {}'.format(cnn_curve['top1']))
out_dict = {}
out_dict['cur_acc'] = []
out_dict['former_acc'] = []
out_dict['both_acc'] = []
for k, v in sess_acc_dict.items():
out_dict['cur_acc'].append(v['cur_acc'])
out_dict['former_acc'].append(v['former_acc'])
out_dict['both_acc'].append(v['all_acc'])
out_df = pandas.DataFrame(out_dict)
out_df = out_df.T
pandas.set_option('display.max_rows', None)
pandas.set_option('display.max_columns', None)
pandas.set_option('display.width', None)
pandas.set_option('display.max_colwidth', None)
logging.info(f"final output:{out_dict}")
logging.info(f"\n****************************************Pretty Output********************************************\
\n{out_df}\
\n***********************************************************************************************")
return out_dict
def _set_device(args):
device_type = args['device']
gpus = []
for device in device_type:
if device_type == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
gpus.append(device)
args['device'] = gpus
def _set_random(seed=1):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def print_args(args):
for key, value in args.items():
logging.info('{}: {}'.format(key, value))