forked from pydata/xarray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pandas_roundtrip.py
97 lines (77 loc) · 3 KB
/
test_pandas_roundtrip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
Property-based tests for roundtripping between xarray and pandas objects.
"""
from functools import partial
import numpy as np
import pandas as pd
import pytest
import xarray as xr
pytest.importorskip("hypothesis")
import hypothesis.extra.numpy as npst # isort:skip
import hypothesis.extra.pandas as pdst # isort:skip
import hypothesis.strategies as st # isort:skip
from hypothesis import given # isort:skip
numeric_dtypes = st.one_of(
npst.unsigned_integer_dtypes(), npst.integer_dtypes(), npst.floating_dtypes()
)
numeric_series = numeric_dtypes.flatmap(lambda dt: pdst.series(dtype=dt))
an_array = npst.arrays(
dtype=numeric_dtypes,
shape=npst.array_shapes(max_dims=2), # can only convert 1D/2D to pandas
)
@st.composite
def datasets_1d_vars(draw) -> xr.Dataset:
"""Generate datasets with only 1D variables
Suitable for converting to pandas dataframes.
"""
# Generate an index for the dataset
idx = draw(pdst.indexes(dtype="u8", min_size=0, max_size=100))
# Generate 1-3 variables, 1D with the same length as the index
vars_strategy = st.dictionaries(
keys=st.text(),
values=npst.arrays(dtype=numeric_dtypes, shape=len(idx)).map(
partial(xr.Variable, ("rows",))
),
min_size=1,
max_size=3,
)
return xr.Dataset(draw(vars_strategy), coords={"rows": idx})
@given(st.data(), an_array)
def test_roundtrip_dataarray(data, arr) -> None:
names = data.draw(
st.lists(st.text(), min_size=arr.ndim, max_size=arr.ndim, unique=True).map(
tuple
)
)
coords = {name: np.arange(n) for (name, n) in zip(names, arr.shape)}
original = xr.DataArray(arr, dims=names, coords=coords)
roundtripped = xr.DataArray(original.to_pandas())
xr.testing.assert_identical(original, roundtripped)
@given(datasets_1d_vars())
def test_roundtrip_dataset(dataset) -> None:
df = dataset.to_dataframe()
assert isinstance(df, pd.DataFrame)
roundtripped = xr.Dataset(df)
xr.testing.assert_identical(dataset, roundtripped)
@given(numeric_series, st.text())
def test_roundtrip_pandas_series(ser, ix_name) -> None:
# Need to name the index, otherwise Xarray calls it 'dim_0'.
ser.index.name = ix_name
arr = xr.DataArray(ser)
roundtripped = arr.to_pandas()
pd.testing.assert_series_equal(ser, roundtripped)
xr.testing.assert_identical(arr, roundtripped.to_xarray())
# Dataframes with columns of all the same dtype - for roundtrip to DataArray
numeric_homogeneous_dataframe = numeric_dtypes.flatmap(
lambda dt: pdst.data_frames(columns=pdst.columns(["a", "b", "c"], dtype=dt))
)
@pytest.mark.xfail
@given(numeric_homogeneous_dataframe)
def test_roundtrip_pandas_dataframe(df) -> None:
# Need to name the indexes, otherwise Xarray names them 'dim_0', 'dim_1'.
df.index.name = "rows"
df.columns.name = "cols"
arr = xr.DataArray(df)
roundtripped = arr.to_pandas()
pd.testing.assert_frame_equal(df, roundtripped)
xr.testing.assert_identical(arr, roundtripped.to_xarray())