forked from coqui-ai/STT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_tflite.py
157 lines (132 loc) · 4.89 KB
/
evaluate_tflite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import argparse
import csv
import os
import sys
import wave
from functools import partial
from multiprocessing import JoinableQueue, Manager, Process, cpu_count
import absl.app
import numpy as np
from coqui_stt_training.util.evaluate_tools import calculate_and_print_report
from coqui_stt_training.util.flags import create_flags
from six.moves import range, zip
from stt import Model
r"""
This module should be self-contained:
- build libstt.so with TFLite:
- bazel build [...] --define=runtime=tflite [...] //native_client:libstt.so
- make -C native_client/python/ TFDIR=... bindings
- setup a virtualenv
- pip install native_client/python/dist/*.whl
- pip install -r requirements_eval_tflite.txt
Then run with a TFLite model, a scorer and a CSV test file
"""
def tflite_worker(model, scorer, queue_in, queue_out, gpu_mask):
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_mask)
ds = Model(model)
ds.enableExternalScorer(scorer)
while True:
try:
msg = queue_in.get()
filename = msg["filename"]
fin = wave.open(filename, "rb")
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
fin.close()
decoded = ds.stt(audio)
queue_out.put(
{
"wav": filename,
"prediction": decoded,
"ground_truth": msg["transcript"],
}
)
except FileNotFoundError as ex:
print("FileNotFoundError: ", ex)
print(queue_out.qsize(), end="\r") # Update the current progress
queue_in.task_done()
def main(args):
manager = Manager()
work_todo = JoinableQueue() # this is where we are going to store input data
work_done = manager.Queue() # this where we are gonna push them out
processes = []
for i in range(args.proc):
worker_process = Process(
target=tflite_worker,
args=(args.model, args.scorer, work_todo, work_done, i),
daemon=True,
name="tflite_process_{}".format(i),
)
worker_process.start() # Launch reader() as a separate python process
processes.append(worker_process)
print([x.name for x in processes])
wavlist = []
ground_truths = []
predictions = []
losses = []
wav_filenames = []
with open(args.csv, "r") as csvfile:
csvreader = csv.DictReader(csvfile)
count = 0
for row in csvreader:
count += 1
# Relative paths are relative to the folder the CSV file is in
if not os.path.isabs(row["wav_filename"]):
row["wav_filename"] = os.path.join(
os.path.dirname(args.csv), row["wav_filename"]
)
work_todo.put(
{"filename": row["wav_filename"], "transcript": row["transcript"]}
)
wav_filenames.extend(row["wav_filename"])
print("Totally %d wav entries found in csv\n" % count)
work_todo.join()
print("\nTotally %d wav file transcripted" % work_done.qsize())
while not work_done.empty():
msg = work_done.get()
losses.append(0.0)
ground_truths.append(msg["ground_truth"])
predictions.append(msg["prediction"])
wavlist.append(msg["wav"])
# Print test summary
_ = calculate_and_print_report(
wav_filenames, ground_truths, predictions, losses, args.csv
)
if args.dump:
with open(args.dump + ".txt", "w") as ftxt, open(
args.dump + ".out", "w"
) as fout:
for wav, txt, out in zip(wavlist, ground_truths, predictions):
ftxt.write("%s %s\n" % (wav, txt))
fout.write("%s %s\n" % (wav, out))
print("Reference texts dumped to %s.txt" % args.dump)
print("Transcription dumped to %s.out" % args.dump)
def parse_args():
parser = argparse.ArgumentParser(description="Computing TFLite accuracy")
parser.add_argument(
"--model", required=True, help="Path to the model (protocol buffer binary file)"
)
parser.add_argument(
"--scorer", required=True, help="Path to the external scorer file"
)
parser.add_argument("--csv", required=True, help="Path to the CSV source file")
parser.add_argument(
"--proc",
required=False,
default=cpu_count(),
type=int,
help="Number of processes to spawn, defaulting to number of CPUs",
)
parser.add_argument(
"--dump",
required=False,
help='Path to dump the results as text file, with one line for each wav: "wav transcription".',
)
args, unknown = parser.parse_known_args()
# Reconstruct argv for absl.flags
sys.argv = [sys.argv[0]] + unknown
return args
if __name__ == "__main__":
main(parse_args())