Skip to content

pyKT: A Python Library to Benchmark Deep Learning based Knowledge Tracing Models

License

Notifications You must be signed in to change notification settings

pykt-team/pykt-toolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

kt_toolkits

knowledge tracing toolkits, including datasets(assist2009, assist2015, algebra2005, algebra2006, statics2011 etc.), preprocess methods(split 5-fold), models(dkt dkt+ dkvmn sakt akt etc.)

How to use?

CUDA_VISIBLE_DEVICES=3 python wandb_akt_train.py

description

preprocess:

The preprocess code for each dataseet.

  • assist2015_preprocess.py

The preprocess code for assist2015 dataset.

If you want to add a new dataseet, please write your own dataset preprocess code, to change the data to this format:

    uid,seq_len
    questions ids / names
    concept ids / names
    timestamps
    usetimes

a example like this:

    50121,4
    106101,106102,106103,106104
    7014,7012,7014,7013
    0,1,1,1
    1647409594,1647409601,1647409666,1647409694
    123,234,456,789
  • split_datasets.py

Split the data into 5-fold for trainning and testing.

data

The data saved dir for each dataset.

datasets

Including a data_loader.py to prepare data for trainning models.

models

Including models: dkt, dkt+, dkvmn, sakt, saint, akt, kqn, atkt.

others

train.py: trainning code.