-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy path21-specify_gpu.py
51 lines (42 loc) · 1.48 KB
/
21-specify_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env python
# Copyright 2021-2024 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###########################################################
# Example of specifying device in multi-GPU environment
###########################################################
import numpy as np
import pyscf
from gpu4pyscf.dft import rks
atom ='''
O 0.0000000000 -0.0000000000 0.1174000000
H -0.7570000000 -0.0000000000 -0.4696000000
H 0.7570000000 0.0000000000 -0.4696000000
'''
def run_dft():
mol = pyscf.M(atom=atom, basis='def2-tzvpp', verbose=1)
mf_GPU = rks.RKS(mol, xc='b3lyp').density_fit()
# Compute Energy
e_dft = mf_GPU.kernel()
# Compute Gradient
g = mf_GPU.nuc_grad_method()
g_dft = g.kernel()
# Compute Hessian
h = mf_GPU.Hessian()
h_dft = h.kernel()
import cupy
# Select Device #1 to run
with cupy.cuda.Device(1):
run_dft()
with cupy.cuda.Device(0):
run_dft()