forked from ChenglongChen/tensorflow-DeepFM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathga_dataset.py
150 lines (108 loc) · 4.55 KB
/
ga_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# -*- coding: utf-8 -*-
# example which maximizes the sum of a list of integers
# each of which can be 0 or 1
import random
from deap import base
from deap import creator
from deap import tools
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
# Attribute generator
# define 'attr_bool' to be an attribute ('gene')
# which corresponds to integers sampled uniformly
# from the range [0,1] (i.e. 0 or 1 with equal
# probability)
toolbox.register("attr_bool", random.randint, 0, 1)
# Structure initializers
# define 'individual' to be an individual
# consisting of 100 'attr_bool' elements ('genes')
toolbox.register("individual", tools.initRepeat, creator.Individual,
toolbox.attr_bool, 100)
# define the population to be a list of individuals
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# the goal ('fitness') function to be maximized
def evalOneMax(individual):
return sum(individual),
# ----------
# Operator registration
# ----------
# register the goal / fitness function
toolbox.register("evaluate", evalOneMax)
# register the crossover operator
toolbox.register("mate", tools.cxTwoPoint)
# register a mutation operator with a probability to
# flip each attribute/gene of 0.05
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
# operator for selecting individuals for breeding the next
# generation: each individual of the current generation
# is replaced by the 'fittest' (best) of three individuals
# drawn randomly from the current generation.
toolbox.register("select", tools.selTournament, tournsize=3)
# ----------
def main():
random.seed(64)
# create an initial population of 300 individuals (where
# each individual is a list of integers)
pop = toolbox.population(n=300)
# CXPB is the probability with which two individuals
# are crossed
#
# MUTPB is the probability for mutating an individual
CXPB, MUTPB = 0.5, 0.2
print("Start of evolution")
# Evaluate the entire population
fitnesses = list(map(toolbox.evaluate, pop))
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
print(" Evaluated %i individuals" % len(pop))
# Extracting all the fitnesses of
fits = [ind.fitness.values[0] for ind in pop]
# Variable keeping track of the number of generations
g = 0
# Begin the evolution
while max(fits) < 100 and g < 1000:
# A new generation
g = g + 1
print("-- Generation %i --" % g)
# Select the next generation individuals
offspring = toolbox.select(pop, len(pop))
# Clone the selected individuals
offspring = list(map(toolbox.clone, offspring))
# Apply crossover and mutation on the offspring
for child1, child2 in zip(offspring[::2], offspring[1::2]):
# cross two individuals with probability CXPB
if random.random() < CXPB:
toolbox.mate(child1, child2)
# fitness values of the children
# must be recalculated later
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
# mutate an individual with probability MUTPB
if random.random() < MUTPB:
toolbox.mutate(mutant)
del mutant.fitness.values
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
print(" Evaluated %i individuals" % len(invalid_ind))
# The population is entirely replaced by the offspring
pop[:] = offspring
# Gather all the fitnesses in one list and print the stats
fits = [ind.fitness.values[0] for ind in pop]
length = len(pop)
mean = sum(fits) / length
sum2 = sum(x * x for x in fits)
std = abs(sum2 / length - mean ** 2) ** 0.5
print(" Min %s" % min(fits))
print(" Max %s" % max(fits))
print(" Avg %s" % mean)
print(" Std %s" % std)
print("-- End of (successful) evolution --")
best_ind = tools.selBest(pop, 1)[0]
print("Best individual is %s, %s" % (best_ind, best_ind.fitness.values))
if __name__ == "__main__":
main()