forked from deepfakes/faceswap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
1020 lines (938 loc) · 53.1 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
""" Command Line Arguments """
import argparse
import logging
import os
import platform
import re
import sys
import textwrap
from importlib import import_module
from lib.logger import crash_log, log_setup
from lib.utils import safe_shutdown
from lib.model.masks import get_available_masks, get_default_mask
from plugins.plugin_loader import PluginLoader
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class ScriptExecutor():
""" Loads the relevant script modules and executes the script.
This class is initialised in each of the argparsers for the relevant
command, then execute script is called within their set_default
function. """
def __init__(self, command, subparsers=None):
self.command = command.lower()
self.subparsers = subparsers
def import_script(self):
""" Only import a script's modules when running that script."""
self.test_for_tf_version()
self.test_for_gui()
cmd = os.path.basename(sys.argv[0])
src = "tools" if cmd == "tools.py" else "scripts"
mod = ".".join((src, self.command.lower()))
module = import_module(mod)
script = getattr(module, self.command.title())
return script
@staticmethod
def test_for_tf_version():
""" Check that the minimum required Tensorflow version is installed """
min_ver = 1.12
try:
import tensorflow as tf
except ImportError:
logger.error("Tensorflow is a requirement but is not installed on your system.")
exit(1)
tf_ver = float(".".join(tf.__version__.split(".")[:2]))
if tf_ver < min_ver:
logger.error("The minimum supported Tensorflow is version %s but you have version "
"%s installed. Please upgrade Tensorflow.", min_ver, tf_ver)
exit(1)
logger.debug("Installed Tensorflow Version: %s", tf_ver)
def test_for_gui(self):
""" If running the gui, check the prerequisites """
if self.command != "gui":
return
self.test_tkinter()
self.check_display()
@staticmethod
def test_tkinter():
""" If the user is running the GUI, test whether the
tkinter app is available on their machine. If not
exit gracefully.
This avoids having to import every tk function
within the GUI in a wrapper and potentially spamming
traceback errors to console """
try:
# pylint: disable=unused-variable
import tkinter # noqa pylint: disable=unused-import
except ImportError:
logger.warning(
"It looks like TkInter isn't installed for your OS, so "
"the GUI has been disabled. To enable the GUI please "
"install the TkInter application. You can try:")
logger.info("Anaconda: conda install tk")
logger.info("Windows/macOS: Install ActiveTcl Community Edition from "
"http://www.activestate.com")
logger.info("Ubuntu/Mint/Debian: sudo apt install python3-tk")
logger.info("Arch: sudo pacman -S tk")
logger.info("CentOS/Redhat: sudo yum install tkinter")
logger.info("Fedora: sudo dnf install python3-tkinter")
exit(1)
@staticmethod
def check_display():
""" Check whether there is a display to output the GUI. If running on
Windows then assume not running in headless mode """
if not os.environ.get("DISPLAY", None) and os.name != "nt":
logger.warning("No display detected. GUI mode has been disabled.")
if platform.system() == "Darwin":
logger.info("macOS users need to install XQuartz. "
"See https://support.apple.com/en-gb/HT201341")
exit(1)
def execute_script(self, arguments):
""" Run the script for called command """
log_setup(arguments.loglevel, arguments.logfile, self.command)
logger.debug("Executing: %s. PID: %s", self.command, os.getpid())
try:
script = self.import_script()
process = script(arguments)
process.process()
except KeyboardInterrupt: # pylint: disable=try-except-raise
raise
except SystemExit:
pass
except Exception: # pylint: disable=broad-except
crash_file = crash_log()
logger.exception("Got Exception on main handler:")
logger.critical("An unexpected crash has occurred. Crash report written to %s. "
"Please verify you are running the latest version of faceswap "
"before reporting", crash_file)
finally:
safe_shutdown()
class Radio(argparse.Action): # pylint: disable=too-few-public-methods
""" Adds support for the GUI Radio buttons
Just a wrapper class to tell the gui to use radio buttons instead of combo boxes
"""
def __init__(self, option_strings, dest, nargs=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super().__init__(option_strings, dest, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, values)
class Slider(argparse.Action): # pylint: disable=too-few-public-methods
""" Adds support for the GUI slider
An additional option 'min_max' must be provided containing tuple of min and max accepted
values.
'rounding' sets the decimal places for floats or the step interval for ints.
"""
def __init__(self, option_strings, dest, nargs=None, min_max=None, rounding=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super().__init__(option_strings, dest, **kwargs)
self.min_max = min_max
self.rounding = rounding
def _get_kwargs(self):
names = ["option_strings",
"dest",
"nargs",
"const",
"default",
"type",
"choices",
"help",
"metavar",
"min_max", # Tuple containing min and max values of scale
"rounding"] # Decimal places to round floats to or step interval for ints
return [(name, getattr(self, name)) for name in names]
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, values)
class FullPaths(argparse.Action): # pylint: disable=too-few-public-methods
""" Expand user- and relative-paths """
def __call__(self, parser, namespace, values, option_string=None):
if isinstance(values, (list, tuple)):
vals = [os.path.abspath(os.path.expanduser(val)) for val in values]
else:
vals = os.path.abspath(os.path.expanduser(values))
setattr(namespace, self.dest, vals)
class DirFullPaths(FullPaths):
""" Class that gui uses to determine if you need to open a directory """
# pylint: disable=too-few-public-methods,unnecessary-pass
pass
class FileFullPaths(FullPaths):
"""
Class that gui uses to determine if you need to open a file.
see lib/gui/utils.py FileHandler for current GUI filetypes
"""
# pylint: disable=too-few-public-methods
def __init__(self, option_strings, dest, nargs=None, filetypes=None, **kwargs):
super().__init__(option_strings, dest, nargs, **kwargs)
self.filetypes = filetypes
def _get_kwargs(self):
names = ["option_strings",
"dest",
"nargs",
"const",
"default",
"type",
"choices",
"help",
"metavar",
"filetypes"]
return [(name, getattr(self, name)) for name in names]
class FilesFullPaths(FileFullPaths): # pylint: disable=too-few-public-methods
""" Class that the gui uses to determine that the input can take multiple files as an input.
Inherits functionality from FileFullPaths
Has the effect of giving the user 2 Open Dialogue buttons in the gui """
pass
class DirOrFileFullPaths(FileFullPaths): # pylint: disable=too-few-public-methods
""" Class that the gui uses to determine that the input can take a folder or a filename.
Inherits functionality from FileFullPaths
Has the effect of giving the user 2 Open Dialogue buttons in the gui """
pass
class SaveFileFullPaths(FileFullPaths):
"""
Class that gui uses to determine if you need to save a file.
see lib/gui/utils.py FileHandler for current GUI filetypes
"""
# pylint: disable=too-few-public-methods,unnecessary-pass
pass
class ContextFullPaths(FileFullPaths):
"""
Class that gui uses to determine if you need to open a file or a
directory based on which action you are choosing
To use ContextFullPaths the action_option item should indicate which
cli option dictates the context of the filesystem dialogue
Bespoke actions are then set in lib/gui/utils.py FileHandler
"""
# pylint: disable=too-few-public-methods, too-many-arguments
def __init__(self, option_strings, dest, nargs=None, filetypes=None,
action_option=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super(ContextFullPaths, self).__init__(option_strings, dest,
filetypes=None, **kwargs)
self.action_option = action_option
self.filetypes = filetypes
def _get_kwargs(self):
names = ["option_strings",
"dest",
"nargs",
"const",
"default",
"type",
"choices",
"help",
"metavar",
"filetypes",
"action_option"]
return [(name, getattr(self, name)) for name in names]
class FullHelpArgumentParser(argparse.ArgumentParser):
""" Identical to the built-in argument parser, but on error it
prints full help message instead of just usage information """
def error(self, message):
self.print_help(sys.stderr)
args = {"prog": self.prog, "message": message}
self.exit(2, "%(prog)s: error: %(message)s\n" % args)
class SmartFormatter(argparse.HelpFormatter):
""" Smart formatter for allowing raw formatting in help
text and lists in the helptext
To use: prefix the help item with "R|" to overide
default formatting. List items can be marked with "L|"
at the start of a newline
adapted from: https://stackoverflow.com/questions/3853722 """
def __init__(self,
prog,
indent_increment=2,
max_help_position=24,
width=None):
super().__init__(prog, indent_increment, max_help_position, width)
self._whitespace_matcher_limited = re.compile(r'[ \r\f\v]+', re.ASCII)
def _split_lines(self, text, width):
if text.startswith("R|"):
text = self._whitespace_matcher_limited.sub(' ', text).strip()[2:]
output = list()
for txt in text.splitlines():
indent = ""
if txt.startswith("L|"):
indent = " "
txt = " - {}".format(txt[2:])
output.extend(textwrap.wrap(txt, width, subsequent_indent=indent))
return output
return argparse.HelpFormatter._split_lines(self, text, width)
class FaceSwapArgs():
""" Faceswap argument parser functions that are universal
to all commands. Should be the parent function of all
subsequent argparsers """
def __init__(self, subparser, command,
description="default", subparsers=None):
self.global_arguments = self.get_global_arguments()
self.argument_list = self.get_argument_list()
self.optional_arguments = self.get_optional_arguments()
if not subparser:
return
self.parser = self.create_parser(subparser, command, description)
self.add_arguments()
script = ScriptExecutor(command, subparsers)
self.parser.set_defaults(func=script.execute_script)
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui override for command specific arguments """
argument_list = []
return argument_list
@staticmethod
def get_optional_arguments():
""" Put the arguments in a list so that they are accessible from both
argparse and gui. This is used for when there are sub-children
(e.g. convert and extract) Override this for custom arguments """
argument_list = []
return argument_list
@staticmethod
def get_global_arguments():
""" Arguments that are used in ALL parts of Faceswap
DO NOT override this """
global_args = list()
global_args.append({"opts": ("-C", "--configfile"),
"action": FileFullPaths,
"filetypes": "ini",
"type": str,
"help": "Optionally overide the saved config with the path to a "
"custom config file."})
global_args.append({"opts": ("-L", "--loglevel"),
"type": str.upper,
"dest": "loglevel",
"default": "INFO",
"choices": ("INFO", "VERBOSE", "DEBUG", "TRACE"),
"help": "Log level. Stick with INFO or VERBOSE unless you need to "
"file an error report. Be careful with TRACE as it will "
"generate a lot of data"})
global_args.append({"opts": ("-LF", "--logfile"),
"action": SaveFileFullPaths,
"filetypes": 'log',
"type": str,
"dest": "logfile",
"help": "Path to store the logfile. Leave blank to store in the "
"faceswap folder",
"default": None})
# This is a hidden argument to indicate that the GUI is being used,
# so the preview window should be redirected Accordingly
global_args.append({"opts": ("-gui", "--gui"),
"action": "store_true",
"dest": "redirect_gui",
"default": False,
"help": argparse.SUPPRESS})
return global_args
@staticmethod
def create_parser(subparser, command, description):
""" Create the parser for the selected command """
parser = subparser.add_parser(
command,
help=description,
description=description,
epilog="Questions and feedback: \
https://github.com/deepfakes/faceswap-playground",
formatter_class=SmartFormatter)
return parser
def add_arguments(self):
""" Parse the arguments passed in from argparse """
options = self.global_arguments + self.argument_list + self.optional_arguments
for option in options:
args = option["opts"]
kwargs = {key: option[key]
for key in option.keys() if key != "opts"}
self.parser.add_argument(*args, **kwargs)
class ExtractConvertArgs(FaceSwapArgs):
""" This class is used as a parent class to capture arguments that
will be used in both the extract and convert process.
Arguments that can be used in both of these processes should be
placed here, but no further processing should be done. This class
just captures arguments """
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = list()
argument_list.append({"opts": ("-i", "--input-dir"),
"action": DirOrFileFullPaths,
"filetypes": "video",
"dest": "input_dir",
"required": True,
"help": "Input directory or video. Either a directory containing "
"the image files you wish to process or path to a video "
"file. NB: This should be the source video/frames NOT the "
"source faces."})
argument_list.append({"opts": ("-o", "--output-dir"),
"action": DirFullPaths,
"dest": "output_dir",
"required": True,
"help": "Output directory. This is where the converted files will "
"be saved."})
argument_list.append({"opts": ("-al", "--alignments"),
"action": FileFullPaths,
"filetypes": "alignments",
"type": str,
"dest": "alignments_path",
"help": "Optional path to an alignments file."})
argument_list.append({"opts": ("-l", "--ref_threshold"),
"action": Slider,
"min_max": (0.01, 0.99),
"rounding": 2,
"type": float,
"dest": "ref_threshold",
"default": 0.4,
"help": "Threshold for positive face recognition. For use with "
"nfilter or filter. Lower values are stricter. NB: Using "
"face filter will significantly decrease extraction speed."})
argument_list.append({"opts": ("-n", "--nfilter"),
"action": FilesFullPaths,
"filetypes": "image",
"dest": "nfilter",
"nargs": "+",
"default": None,
"help": "Reference image for the persons you do not want to "
"process. Should be a front portrait with a single person "
"in the image. Multiple images can be added space "
"separated. NB: Using face filter will significantly "
"decrease extraction speed."})
argument_list.append({"opts": ("-f", "--filter"),
"action": FilesFullPaths,
"filetypes": "image",
"dest": "filter",
"nargs": "+",
"default": None,
"help": "Reference images for the person you want to process. "
"Should be a front portrait with a single person in the "
"image. Multiple images can be added space separated. NB: "
"Using face filter will significantly decrease extraction "
"speed."})
return argument_list
class ExtractArgs(ExtractConvertArgs):
""" Class to parse the command line arguments for extraction.
Inherits base options from ExtractConvertArgs where arguments
that are used for both extract and convert should be placed """
@staticmethod
def get_optional_arguments():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = []
argument_list.append({"opts": ("--serializer", ),
"type": str.lower,
"dest": "serializer",
"default": "json",
"choices": ("json", "pickle", "yaml"),
"help": "Serializer for alignments file. If "
"yaml is chosen and not available, then "
"json will be used as the default "
"fallback."})
argument_list.append({
"opts": ("-D", "--detector"),
"action": Radio,
"type": str.lower,
"choices": PluginLoader.get_available_extractors("detect"),
"default": "mtcnn",
"help": "R|Detector to use. Some of these have configurable settings in "
"'/config/extract.ini' or 'Edit > Configure Extract Plugins':"
"\nL|'cv2-dnn': A CPU only extractor, is the least reliable, but uses least "
"resources and runs fast on CPU. Use this if not using a GPU and time is "
"important."
"\nL|'mtcnn': Fast on GPU, slow on CPU. Uses fewer resources than other GPU "
"detectors but can often return more false positives."
"\nL|'s3fd': Fast on GPU, slow on CPU. Can detect more faces and fewer false "
"positives than other GPU detectors, but is a lot more resource intensive."})
argument_list.append({
"opts": ("-A", "--aligner"),
"action": Radio,
"type": str.lower,
"choices": PluginLoader.get_available_extractors("align"),
"default": "fan",
"help": "R|Aligner to use."
"\nL|'cv2-dnn': A cpu only CNN based landmark detector. Faster, less "
"resource intensive, but less accurate. Only use this if not using a gpu "
" and time is important."
"\nL|'fan': Face Alignment Network. Best aligner. "
"GPU heavy, slow when not running on GPU"})
argument_list.append({"opts": ("-r", "--rotate-images"),
"type": str,
"dest": "rotate_images",
"default": None,
"help": "If a face isn't found, rotate the "
"images to try to find a face. Can find "
"more faces at the cost of extraction "
"speed. Pass in a single number to use "
"increments of that size up to 360, or "
"pass in a list of numbers to enumerate "
"exactly what angles to check"})
argument_list.append({"opts": ("-bt", "--blur-threshold"),
"type": float,
"action": Slider,
"min_max": (0.0, 100.0),
"rounding": 1,
"dest": "blur_thresh",
"default": 0.0,
"help": "Automatically discard images blurrier than the specified "
"threshold. Discarded images are moved into a \"blurry\" "
"sub-folder. Lower values allow more blur. Set to 0.0 to "
"turn off."})
argument_list.append({"opts": ("-mp", "--multiprocess"),
"action": "store_true",
"default": False,
"help": "Run extraction in parallel. Offers "
"speed up for some extractor/detector "
"combinations, less so for others. "
"Only has an effect if both the "
"aligner and detector use the GPU, "
"otherwise this is automatic."})
argument_list.append({"opts": ("-sz", "--size"),
"type": int,
"action": Slider,
"min_max": (128, 512),
"default": 256,
"rounding": 64,
"help": "The output size of extracted faces. Make sure that the "
"model you intend to train supports your required size. "
"This will only need to be changed for hi-res models."})
argument_list.append({"opts": ("-min", "--min-size"),
"type": int,
"action": Slider,
"dest": "min_size",
"min_max": (0, 1080),
"default": 0,
"rounding": 20,
"help": "Filters out faces detected below this size. Length, in "
"pixels across the diagonal of the bounding box. Set to 0 "
"for off"})
argument_list.append({"opts": ("-een", "--extract-every-n"),
"type": int,
"action": Slider,
"dest": "extract_every_n",
"min_max": (1, 100),
"default": 1,
"rounding": 1,
"help": "Extract every 'nth' frame. This option will skip frames "
"when extracting faces. For example a value of 1 will "
"extract faces from every frame, a value of 10 will extract "
"faces from every 10th frame."})
argument_list.append({"opts": ("-s", "--skip-existing"),
"action": "store_true",
"dest": "skip_existing",
"default": False,
"help": "Skips frames that have already been "
"extracted and exist in the alignments "
"file"})
argument_list.append({"opts": ("-sf", "--skip-existing-faces"),
"action": "store_true",
"dest": "skip_faces",
"default": False,
"help": "Skip frames that already have "
"detected faces in the alignments "
"file"})
argument_list.append({"opts": ("-dl", "--debug-landmarks"),
"action": "store_true",
"dest": "debug_landmarks",
"default": False,
"help": "Draw landmarks on the ouput faces for "
"debug"})
argument_list.append({"opts": ("-ae", "--align-eyes"),
"action": "store_true",
"dest": "align_eyes",
"default": False,
"help": "Perform extra alignment to ensure "
"left/right eyes are at the same "
"height"})
argument_list.append({"opts": ("-si", "--save-interval"),
"dest": "save_interval",
"type": int,
"action": Slider,
"min_max": (0, 1000),
"rounding": 10,
"default": 0,
"help": "Automatically save the alignments file after a set amount "
"of frames. Will only save at the end of extracting by "
"default. WARNING: Don't interrupt the script when writing "
"the file because it might get corrupted. Set to 0 to turn "
"off"})
return argument_list
class ConvertArgs(ExtractConvertArgs):
""" Class to parse the command line arguments for conversion.
Inherits base options from ExtractConvertArgs where arguments
that are used for both extract and convert should be placed """
@staticmethod
def get_optional_arguments():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = []
argument_list.append({"opts": ("-m", "--model-dir"),
"action": DirFullPaths,
"dest": "model_dir",
"required": True,
"help": "Model directory. A directory containing the trained model "
"you wish to process."})
argument_list.append({"opts": ("-a", "--input-aligned-dir"),
"action": DirFullPaths,
"dest": "input_aligned_dir",
"default": None,
"help": "Input \"aligned directory\". A "
"directory that should contain the "
"aligned faces extracted from the input "
"files. If you delete faces from this "
"folder, they'll be skipped during "
"conversion. If no aligned dir is "
"specified, all faces will be "
"converted"})
argument_list.append({"opts": ("-ref", "--reference-video"),
"action": FileFullPaths,
"dest": "reference_video",
"filetypes": "video",
"type": str,
"help": "Only required if converting from images to video. Provide "
"The original video that the source frames were extracted "
"from (for extracting the fps and audio)."})
argument_list.append({
"opts": ("-c", "--color-adjustment"),
"action": Radio,
"type": str.lower,
"dest": "color_adjustment",
"choices": PluginLoader.get_available_convert_plugins("color", True),
"default": "avg-color",
"help": "R|Performs color adjustment to the swapped face. Some of these options have "
"configurable settings in '/config/convert.ini' or 'Edit > Configure "
"Convert Plugins':"
"\nL|avg-color: Adjust the mean of each color channel in the swapped "
"reconstruction to equal the mean of the masked area in the orginal image."
"\nL|color-transfer: Transfers the color distribution from the source to the "
"target image using the mean and standard deviations of the L*a*b* "
"color space."
"\nL|manual-balance: Manually adjust the balance of the image in a variety of "
"color spaces. Best used with the Preview tool to set correct values."
"\nL|match-hist: Adjust the histogram of each color channel in the swapped "
"reconstruction to equal the histogram of the masked area in the orginal "
"image."
"\nL|seamless-clone: Use cv2's seamless clone function to remove extreme "
"gradients at the mask seam by smoothing colors. Generally does not give "
"very satisfactory results."
"\nL|none: Don't perform color adjustment."})
argument_list.append({
"opts": ("-sc", "--scaling"),
"action": Radio,
"type": str.lower,
"choices": PluginLoader.get_available_convert_plugins("scaling", True),
"default": "none",
"help": "R|Performs a scaling process to attempt to get better definition on the "
"final swap. Some of these options have configurable settings in "
"'/config/convert.ini' or 'Edit > Configure Convert Plugins':"
"\nL|sharpen: Perform sharpening on the final face."
"\nL|none: Don't perform any scaling operations."})
argument_list.append({
"opts": ("-M", "--mask-type"),
"action": Radio,
"type": str.lower,
"dest": "mask_type",
"choices": get_available_masks() + ["predicted"],
"default": "predicted",
"help": "R|Mask to use to replace faces. Blending of the masks can be adjusted in "
"'/config/convert.ini' or 'Edit > Configure Convert Plugins':"
"\nL|components: An improved face hull mask using a facehull of 8 facial "
"parts."
"\nL|dfl_full: An improved face hull mask using a facehull of 3 facial parts."
"\nL|facehull: Face cutout based on landmarks."
"\nL|predicted: The predicted mask generated from the model. If the model was "
"not trained with a mask then this will fallback to "
"'{}'".format(get_default_mask()) +
"\nL|none: Don't use a mask."})
argument_list.append({"opts": ("-w", "--writer"),
"action": Radio,
"type": str,
"choices": PluginLoader.get_available_convert_plugins("writer",
False),
"default": "opencv",
"help": "R|The plugin to use to output the converted images. The "
"writers are configurable in '/config/convert.ini' or `Edit "
"> Configure Convert Plugins:'"
"\nL|ffmpeg: [video] Writes out the convert straight to "
"video. When the input is a series of images then the "
"'-ref' (--reference-video) parameter must be set."
"\nL|gif: [animated image] Create an animated gif."
"\nL|opencv: [images] The fastest image writer, but less "
"options and formats than other plugins."
"\nL|pillow: [images] Slower than opencv, but has more "
"options and supports more formats."})
argument_list.append({"opts": ("-osc", "--output-scale"),
"dest": "output_scale",
"action": Slider,
"type": int,
"default": 100,
"min_max": (25, 400),
"rounding": 1,
"help": "Scale the final output frames by this amount. 100%% will "
"output the frames at source dimensions. 50%% at half size "
"200%% at double size"})
argument_list.append({"opts": ("-g", "--gpus"),
"type": int,
"action": Slider,
"min_max": (1, 10),
"rounding": 1,
"default": 1,
"help": "Number of GPUs to use for conversion"})
argument_list.append({"opts": ("-fr", "--frame-ranges"),
"nargs": "+",
"type": str,
"help": "frame ranges to apply transfer to e.g. For frames 10 to 50 "
"and 90 to 100 use --frame-ranges 10-50 90-100. Files "
"must have the frame-number as the last number in the name! "
"Frames falling outside of the selected range will be "
"discarded unless '-k' (--keep-unchanged) is selected."})
argument_list.append({"opts": ("-k", "--keep-unchanged"),
"action": "store_true",
"dest": "keep_unchanged",
"default": False,
"help": "When used with --frame-ranges outputs the unchanged frames "
"that are not processed instead of discarding them."})
argument_list.append({"opts": ("-s", "--swap-model"),
"action": "store_true",
"dest": "swap_model",
"default": False,
"help": "Swap the model. Instead of A -> B, "
"swap B -> A"})
argument_list.append({"opts": ("-sp", "--singleprocess"),
"action": "store_true",
"default": False,
"help": "Disable multiprocessing. Slower but less resource "
"intensive."})
argument_list.append({"opts": ("-t", "--trainer"),
"type": str.lower,
"choices": PluginLoader.get_available_models(),
"help": "[LEGACY] This only needs to be selected if a legacy "
"model is being loaded or if there are multiple models in "
"the model folder"})
return argument_list
class TrainArgs(FaceSwapArgs):
""" Class to parse the command line arguments for training """
@staticmethod
def get_argument_list():
""" Put the arguments in a list so that they are accessible from both
argparse and gui """
argument_list = list()
argument_list.append({"opts": ("-A", "--input-A"),
"action": DirFullPaths,
"dest": "input_a",
"required": True,
"help": "Input directory. A directory containing training images "
"for face A."})
argument_list.append({"opts": ("-B", "--input-B"),
"action": DirFullPaths,
"dest": "input_b",
"required": True,
"help": "Input directory. A directory containing training images "
"for face B."})
argument_list.append({"opts": ("-ala", "--alignments-A"),
"action": FileFullPaths,
"filetypes": 'alignments',
"type": str,
"dest": "alignments_path_a",
"default": None,
"help": "Path to alignments file for training set A. Only required "
"if you are using a masked model or warp-to-landmarks is "
"enabled. Defaults to <input-A>/alignments.json if not "
"provided."})
argument_list.append({"opts": ("-alb", "--alignments-B"),
"action": FileFullPaths,
"filetypes": 'alignments',
"type": str,
"dest": "alignments_path_b",
"default": None,
"help": "Path to alignments file for training set B. Only required "
"if you are using a masked model or warp-to-landmarks is "
"enabled. Defaults to <input-B>/alignments.json if not "
"provided."})
argument_list.append({"opts": ("-m", "--model-dir"),
"action": DirFullPaths,
"dest": "model_dir",
"required": True,
"help": "Model directory. This is where the training data will be "
"stored."})
argument_list.append({"opts": ("-t", "--trainer"),
"action": Radio,
"type": str.lower,
"choices": PluginLoader.get_available_models(),
"default": PluginLoader.get_default_model(),
"help": "R|Select which trainer to use. Trainers can be"
"configured from the edit menu or the config folder."
"\nL|original: The original model created by /u/deepfakes."
"\nL|dfaker: 64px in/128px out model from dfaker. "
"Enable 'warp-to-landmarks' for full dfaker method."
"\nL|dfl-h128. 128px in/out model from deepfacelab"
"\nL|iae: A model that uses intermediate layers to try to "
"get better details"
"\nL|lightweight: A lightweight model for low-end cards. "
"Don't expect great results. Can train as low as 1.6GB "
"with batch size 8."
"\nL|realface: Customizable in/out resolution model "
"from andenixa. The autoencoders are unbalanced so B>A "
"swaps won't work so well. Very configurable."
"\nL|unbalanced: 128px in/out model from andenixa. The "
"autoencoders are unbalanced so B>A swaps won't work so "
"well. Very configurable."
"\nL|villain: 128px in/out model from villainguy. Very "
"resource hungry (11GB for batchsize 16). Good for "
"details, but more susceptible to color differences."})
argument_list.append({"opts": ("-s", "--save-interval"),
"type": int,
"action": Slider,
"min_max": (10, 1000),
"rounding": 10,
"dest": "save_interval",
"default": 100,
"help": "Sets the number of iterations before saving the model"})
argument_list.append({"opts": ("-ss", "--snapshot-interval"),
"type": int,
"action": Slider,
"min_max": (0, 100000),
"rounding": 5000,
"dest": "snapshot_interval",
"default": 25000,
"help": "Sets the number of iterations before saving a backup "
"snapshot of the model in it's current state. Set to 0 for "
"off."})
argument_list.append({"opts": ("-bs", "--batch-size"),
"type": int,
"action": Slider,
"min_max": (2, 256),
"rounding": 2,
"dest": "batch_size",
"default": 64,
"help": "Batch size, as a power of 2 (64, 128, 256, etc)"})
argument_list.append({"opts": ("-it", "--iterations"),
"type": int,
"action": Slider,
"min_max": (0, 5000000),
"rounding": 20000,
"default": 1000000,
"help": "Length of training in iterations."})
argument_list.append({"opts": ("-g", "--gpus"),
"type": int,
"action": Slider,
"min_max": (1, 10),
"rounding": 1,
"default": 1,
"help": "Number of GPUs to use for training"})
argument_list.append({"opts": ("-ps", "--preview-scale"),
"type": int,
"action": Slider,
"dest": "preview_scale",
"min_max": (25, 200),
"rounding": 25,
"default": 50,
"help": "Percentage amount to scale the preview by."})
argument_list.append({"opts": ("-p", "--preview"),
"action": "store_true",
"dest": "preview",
"default": False,
"help": "Show training preview output. in a separate window."})
argument_list.append({"opts": ("-w", "--write-image"),
"action": "store_true",
"dest": "write_image",
"default": False,
"help": "Writes the training result to a file. The image will be "
"stored in the root of your FaceSwap folder."})
argument_list.append({"opts": ("-ag", "--allow-growth"),
"action": "store_true",
"dest": "allow_growth",
"default": False,
"help": "Sets allow_growth option of Tensorflow "
"to spare memory on some configs"})
argument_list.append({"opts": ("-nl", "--no-logs"),
"action": "store_true",
"dest": "no_logs",
"default": False,
"help": "Disables TensorBoard logging. NB: Disabling logs means "
"that you will not be able to use the graph or analysis "
"for this session in the GUI."})
argument_list.append({"opts": ("-pp", "--ping-pong"),
"action": "store_true",
"dest": "pingpong",
"default": False,
"help": "Enable ping pong training. Trains one side at a time, "
"switching sides at each save iteration. Training will take "
"2 to 4 times longer, with about a 30%%-50%% reduction in "
"VRAM useage. NB: Preview won't show until both sides have "
"been trained once."})
argument_list.append({"opts": ("-msg", "--memory-saving-gradients"),
"action": "store_true",
"dest": "memory_saving_gradients",
"default": False,
"help": "Trades off VRAM useage against computation time. Can fit "
"larger models into memory at a cost of slower training "
"speed. 50%%-150%% batch size increase for 20%%-50%% longer "
"training time. NB: Launch time will be significantly "
"delayed. Switching sides using ping-pong training will "
"take longer."})
argument_list.append({"opts": ("-wl", "--warp-to-landmarks"),
"action": "store_true",
"dest": "warp_to_landmarks",
"default": False,
"help": "Warps training faces to closely matched Landmarks from the "
"opposite face-set rather than randomly warping the face. "
"This is the 'dfaker' way of doing warping. Alignments "
"files for both sets of faces must be provided if using "
"this option."})
argument_list.append({"opts": ("-nf", "--no-flip"),
"action": "store_true",
"dest": "no_flip",
"default": False,
"help": "To effectively learn, a random set of images are flipped "
"horizontally. Sometimes it is desirable for this not to "
"occur. Generally this should be left off except for "
"during 'fit training'."})
argument_list.append({"opts": ("-ac", "--augment-color"),
"action": "store_true",
"dest": "augment_color",
"default": False,
"help": "Perform color augmentation on training images. This has "
"a 50%% chance of performing Contrast Limited Adaptive "
"Histogram Equilization on the image. Then it randomly "
"shifts the color balance +/- 8%% and the lighting +/- 30%% "
"on each face fed to the model. Should help make the model "
"less susceptible to color differences between the A and B "
"set, but may increase training time."})
argument_list.append({"opts": ("-tia", "--timelapse-input-A"),
"action": DirFullPaths,
"dest": "timelapse_input_a",
"default": None,
"help": "For if you want a timelapse: "
"The input folder for the timelapse. "
"This folder should contain faces of A "
"which will be converted for the "
"timelapse. You must supply a "
"--timelapse-output and a "
"--timelapse-input-B parameter."})
argument_list.append({"opts": ("-tib", "--timelapse-input-B"),
"action": DirFullPaths,
"dest": "timelapse_input_b",
"default": None,
"help": "For if you want a timelapse: "
"The input folder for the timelapse. "
"This folder should contain faces of B "
"which will be converted for the "
"timelapse. You must supply a "
"--timelapse-output and a "
"--timelapse-input-A parameter."})
argument_list.append({"opts": ("-to", "--timelapse-output"),
"action": DirFullPaths,
"dest": "timelapse_output",
"default": None,
"help": "The output folder for the timelapse. "
"If the input folders are supplied but "