In this example, we show how to use scripts to make your fine-tuning process more convenient
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding/scripts
Hard negatives is a widely used method to improve the quality of sentence embedding. You can mine hard negatives following this command:
python hn_mine.py \
--input_file toy_finetune_data.jsonl \
--output_file toy_finetune_data_minedHN.jsonl \
--range_for_sampling 2-200 \
--negative_number 15 \
--use_gpu_for_searching \
--embedder_name_or_path BAAI/bge-base-en-v1.5
input_file
: json data for finetuning. This script will retrieve top-k documents for each query, and random sample negatives from the top-k documents (not including the positive documents).output_file
: path to save JSON data with mined hard negatives for finetuningnegative_number
: the number of sampled negativesrange_for_sampling
: where to sample negative. For example,2-100
means samplingnegative_number
negatives from top2-top200 documents. You can set larger value to reduce the difficulty of negatives (e.g., set it60-300
to sample negatives from top60-300 passages)candidate_pool
: The pool to retrieval. The default value is None, and this script will retrieve from the combination of allneg
ininput_file
. The format of this file is the same as pretrain data. If input a candidate_pool, this script will retrieve negatives from this file.use_gpu_for_searching
: whether to use faiss-gpu to retrieve negatives.search_batch_size
: batch size for searching. Default is 64.embedder_name_or_path
: The name or path to the embedder.embedder_model_class
: Class of the model used for embedding (current options include 'encoder-only-base', 'encoder-only-m3', 'decoder-only-base', 'decoder-only-icl'.). Default is None. For the custom model, you should set this argument.normalize_embeddings
: Set toTrue
to normalize embeddings.pooling_method
: The pooling method for the embedder.use_fp16
: Use FP16 precision for inference.devices
: List of devices used for inference.query_instruction_for_retrieval
,query_instruction_format_for_retrieval
: Instructions and format for query during retrieval.examples_for_task
,examples_instruction_format
: Example tasks and their instructions format. This is only used whenembedder_model_class
is set todecoder-only-icl
.trust_remote_code
: Set toTrue
to trust remote code execution.cache_dir
: Cache directory for models.embedder_batch_size
: Batch sizes for embedding and reranking.embedder_query_max_length
,embedder_passage_max_length
: Maximum length for embedding queries and passages.
Teacher scores can be used for model distillation. You can obtain the scores using the following command:
python add_reranker_score.py \
--input_file toy_finetune_data_minedHN.jsonl \
--output_file toy_finetune_data_score.jsonl \
--reranker_name_or_path BAAI/bge-reranker-v2-m3
input_file
: path to save JSON data with mined hard negatives for finetuningoutput_file
: path to save JSON data with scores for finetuninguse_fp16
: Whether to use fp16 for inference. Default: Truedevices
: Devices to use for inference. Default: None, multiple values allowedtrust_remote_code
: Trust remote code. Default: Falsereranker_name_or_path
: The reranker name or path. Default: Nonereranker_model_class
: The reranker model class. Available classes: ['auto', 'encoder-only-base', 'decoder-only-base', 'decoder-only-layerwise', 'decoder-only-lightweight']. Default: autoreranker_peft_path
: The reranker peft path. Default: Noneuse_bf16
: Whether to use bf16 for inference. Default: Falsequery_instruction_for_rerank
: Instruction for query. Default: Nonequery_instruction_format_for_rerank
: Format for query instruction. Default: {{}{}}passage_instruction_for_rerank
: Instruction for passage. Default: Nonepassage_instruction_format_for_rerank
: Format for passage instruction. Default: {{}{}}cache_dir
: Cache directory for models. Default: Nonereranker_batch_size
: Batch size for inference. Default: 3000reranker_query_max_length
: Max length for reranking queries. Default: Nonereranker_max_length
: Max length for reranking. Default: 512normalize
: Whether to normalize the reranking scores. Default: Falseprompt
: The prompt for the reranker. Default: Nonecutoff_layers
: The output layers of layerwise/lightweight reranker. Default: Nonecompress_ratio
: The compress ratio of lightweight reranker. Default: 1compress_layers
: The compress layers of lightweight reranker. Default: None, multiple values allowed
You can split the data using the following command:
python split_data_by_length.py \
--input_path train_data \
--output_dir train_data_split \
--cache_dir .cache \
--log_name .split_log \
--length_list 0 500 1000 2000 3000 4000 5000 6000 7000 \
--model_name_or_path BAAI/bge-m3 \
--num_proc 16
input_path
: The path of input data. It can be a file or a directory containing multiple files.output_dir
: The directory of output data. The split data files will be saved to this directory.cache_dir
: The cache directory. Default: Nonelog_name
: The name of the log file. Default:.split_log
, which will be saved tooutput_dir
length_list
: The length list to split. Default: [0, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000]model_name_or_path
: The model name or path of the tokenizer. Default:BAAI/bge-m3
num_proc
: The number of processes. Default: 16overwrite
: Whether to overwrite the output file. Default: False