-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_daily_means.py
executable file
·453 lines (420 loc) · 18.3 KB
/
plot_daily_means.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#!/usr/bin/env python3
from functools import partial
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import netCDF4 as nc4
from e3sm_case_output import E3SMCaseOutput, day_str
START_DAY = 1
END_DAY = 15
END_ZM10S_DAY = 19
START_AVG_DAY = 3
END_AVG_DAY = 15
DAILY_FILE_LOC="/p/lscratchh/santos36/timestep_daily_avgs/"
FOCUS_PRECIP = False
USE_PRESAER = True
LAND_ONLY = False
OCEAN_ONLY = False # Note that this includes ocean and sea-ice grid cells
TROPICS_ONLY = False
MIDLATITUDES_ONLY = False
assert not (FOCUS_PRECIP and USE_PRESAER), \
"no precipitation-specific prescribed aerosol run set has been defined"
assert not (LAND_ONLY and OCEAN_ONLY), \
"can't do only land and only ocean"
assert not (TROPICS_ONLY and MIDLATITUDES_ONLY), \
"can't do only tropics and only midlatitudes"
days = list(range(START_DAY, END_DAY+1))
ndays = len(days)
navgdays = END_AVG_DAY - START_AVG_DAY + 1
suffix = '_d{}-{}'.format(day_str(START_DAY), day_str(END_DAY))
if FOCUS_PRECIP:
suffix += '_precip'
if USE_PRESAER:
suffix += '_presaer'
if LAND_ONLY:
sfc_suffix = 'lnd'
elif OCEAN_ONLY:
sfc_suffix = 'ocn'
else:
sfc_suffix = ''
if TROPICS_ONLY:
suffix += '_{}tropics'.format(sfc_suffix)
elif MIDLATITUDES_ONLY:
suffix += '_{}midlats'.format(sfc_suffix)
elif sfc_suffix != '':
suffix += '_{}'.format(sfc_suffix)
log_file = open("plot_daily_log{}.txt".format(suffix), 'w')
if USE_PRESAER:
REF_CASE = E3SMCaseOutput("timestep_presaer_ctrl", "CTRLPA", DAILY_FILE_LOC, START_DAY, END_DAY)
TEST_CASES = [
E3SMCaseOutput("timestep_presaer_ZM_10s", "ZM10PA", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_presaer_ZM_10s_lower_tau", "ZM10LTPA", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_presaer_CLUBB_MG2_10s", "CLUBBMICRO10PA", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_presaer_CLUBB_MG2_10s_ZM_10s", "CLUBBMICRO10ZM10PA", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_presaer_CLUBB_MG2_10s_ZM_10s_lower_tau", "CLUBBMICRO10ZM10LTPA", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_presaer_cld_10s", "CLD10PA", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_presaer_cld_10s_lower_tau", "CLD10LTPA", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_presaer_cld_10s_lower_tau2", "CLD10LT2PA", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_presaer_all_10s", "ALL10PA", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_presaer_all_10s_lower_tau", "ALL10LTPA", DAILY_FILE_LOC, START_DAY, END_DAY),
]
STYLES = {
"CLUBBMICRO10PA": ('indigo', '-'),
"ALL10PA": ('dimgrey', '-'),
"ZM10PA": ('g', '-'),
"CLUBBMICRO10ZM10PA": ('saddlebrown', '-'),
"CLD10PA": ('slateblue', '-'),
"ALL10LTPA": ('dimgrey', '-.'),
"ZM10LTPA": ('g', '-.'),
"CLUBBMICRO10ZM10LTPA": ('saddlebrown', '-.'),
"CLD10LTPA": ('slateblue', '-.'),
"CLD10LT2PA": ('slateblue', ':'),
}
elif FOCUS_PRECIP:
REF_CASE = E3SMCaseOutput("timestep_ctrl", "CTRL", DAILY_FILE_LOC, START_DAY, END_DAY)
TEST_CASES = [
E3SMCaseOutput("timestep_precip_grad", "PFMG", DAILY_FILE_LOC, START_DAY, END_DAY),
# E3SMCaseOutput("timestep_CLUBB_10s", "CLUBB10", DAILY_FILE_LOC, START_DAY, END_DAY),
# E3SMCaseOutput("timestep_CLUBB_10s_MG2_10s", "CLUBB10MICRO10", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_MG2_10s", "MICRO10", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_precip_grad_MG2_10s", "PFMGMICRO10", DAILY_FILE_LOC, START_DAY, END_DAY),
# E3SMCaseOutput("timestep_CLUBB_MG2_60s", "CLUBBMICRO60", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_CLUBB_MG2_10s", "CLUBBMICRO10", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_precip_grad_CLUBB_MG2_10s", "PFMGCLUBBMICRO10", DAILY_FILE_LOC, START_DAY, END_DAY),
# E3SMCaseOutput("timestep_all_300s", "ALL300", DAILY_FILE_LOC, START_DAY, END_DAY),
# E3SMCaseOutput("timestep_all_60s", "ALL60", DAILY_FILE_LOC, START_DAY, END_DAY),
# E3SMCaseOutput("timestep_all_10s", "ALL10", DAILY_FILE_LOC, START_DAY, END_DAY),
]
STYLES = {
"DYN10": ('y', '-'),
"CLUBB10": ('b', '-'),
"MICRO10": ('r', '-'),
"CLUBB10MICRO10": ('maroon', '-'),
"CLUBBMICROSTR": ('m', '-'),
"CLUBBMICROSTR60": ('m', '--'),
"CLUBBMICRO60": ('indigo', '--'),
"CLUBBMICRO10": ('indigo', '-'),
"ALL10": ('dimgrey', '-'),
"ALL60": ('dimgrey', '--'),
"ALL300": ('dimgrey', ':'),
"ALLRAD10": ('orange', '-'),
"PFMG": ('k', '-.'),
"PFMGMICRO10": ('r', '-.'),
"PFMGCLUBBMICRO10": ('indigo', '-.'),
}
else:
REF_CASE = E3SMCaseOutput("timestep_ctrl", "CTRL", DAILY_FILE_LOC, START_DAY, END_DAY)
TEST_CASES = [
E3SMCaseOutput("timestep_dyn_10s", "DYN10", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_CLUBB_10s", "CLUBB10", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_CLUBB_10s_MG2_10s", "CLUBB10MICRO10", DAILY_FILE_LOC, START_DAY, END_DAY),
# E3SMCaseOutput("timestep_CLUBB_MG2_Strang", "CLUBBMICROSTR", DAILY_FILE_LOC, START_DAY, END_DAY),
# E3SMCaseOutput("timestep_CLUBB_MG2_Strang_60s", "CLUBBMICROSTR60", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_MG2_10s", "MICRO10", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_CLUBB_MG2_60s", "CLUBBMICRO60", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_CLUBB_MG2_10s", "CLUBBMICRO10", DAILY_FILE_LOC, START_DAY, END_DAY),
# E3SMCaseOutput("timestep_ZM_10s", "ZM10", DAILY_FILE_LOC, START_DAY, END_ZM10S_DAY),
# E3SMCaseOutput("timestep_ZM_300s", "ZM300", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_all_rad_10s", "ALLRAD10", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_all_300s", "ALL300", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_all_60s", "ALL60", DAILY_FILE_LOC, START_DAY, END_DAY),
E3SMCaseOutput("timestep_all_10s", "ALL10", DAILY_FILE_LOC, START_DAY, END_DAY),
]
STYLES = {
"DYN10": ('y', '-'),
"CLUBB10": ('b', '-'),
"MICRO10": ('r', '-'),
"CLUBB10MICRO10": ('maroon', '-'),
"CLUBBMICROSTR": ('m', '-'),
"CLUBBMICROSTR60": ('m', '--'),
"CLUBBMICRO60": ('indigo', '--'),
"CLUBBMICRO10": ('indigo', '-'),
"ALL10": ('dimgrey', '-'),
"ALL60": ('dimgrey', '--'),
"ALL300": ('dimgrey', ':'),
"ALLRAD10": ('orange', '-'),
}
case_num = len(TEST_CASES)
rfile0 = nc4.Dataset(REF_CASE.get_daily_file_name(START_DAY), 'r')
nlev = len(rfile0.dimensions['lev'])
ncol = len(rfile0.dimensions['ncol'])
area = rfile0['area'][:]
if LAND_ONLY:
landfrac = rfile0['LANDFRAC'][0,:]
area *= landfrac
elif OCEAN_ONLY:
landfrac = rfile0['LANDFRAC'][0,:]
area *= 1. - landfrac
# For tropics_only cases, just use a weight of 0 for all other cases.
if TROPICS_ONLY:
lat = rfile0['lat'][:]
for i in range(ncol):
if np.abs(lat[i]) > 30.:
area[i] = 0.
# Same for midlatitudes.
elif MIDLATITUDES_ONLY:
lat = rfile0['lat'][:]
for i in range(ncol):
if np.abs(lat[i]) < 30. or np.abs(lat[i]) > 60.:
area[i] = 0.
area_sum = area.sum()
weights = area/area_sum
rfile0.close()
def calc_var_stats(ref_case, test_cases, day, varnames):
varnames_read = [name for name in varnames if name != "PRECT" and name != "TAU"]
if "PRECT" in varnames:
if "PRECL" not in varnames:
varnames_read.append("PRECL")
if "PRECC" not in varnames:
varnames_read.append("PRECC")
if "TAU" in varnames:
if "TAUX" not in varnames:
varnames_read.append("TAUX")
if "TAUY" not in varnames:
varnames_read.append("TAUY")
ref_time_avg, test_time_avgs, diff_time_avgs = ref_case.compare_daily_averages(test_cases, day, varnames_read)
if "PRECT" in varnames:
ref_time_avg["PRECT"] = ref_time_avg["PRECL"] + ref_time_avg["PRECC"]
for icase in range(case_num):
test_time_avgs[icase]["PRECT"] = test_time_avgs[icase]["PRECL"] + test_time_avgs[icase]["PRECC"]
diff_time_avgs[icase]["PRECT"] = diff_time_avgs[icase]["PRECL"] + diff_time_avgs[icase]["PRECC"]
if "TAU" in varnames:
ref_time_avg["TAU"] = np.sqrt(ref_time_avg["TAUX"]**2 + ref_time_avg["TAUY"]**2)
for icase in range(case_num):
test_time_avgs[icase]["TAU"] = np.sqrt(test_time_avgs[icase]["TAUX"]**2 + test_time_avgs[icase]["TAUY"]**2)
diff_time_avgs[icase]["TAU"] = test_time_avgs[icase]["TAU"] - ref_time_avg["TAU"]
ref_avg = dict()
test_avgs = dict()
diff_avgs = dict()
rmses = dict()
for varname in varnames:
if varname in vars_3D:
ref_avg[varname] = np.zeros((nlev,))
for jlev in range(nlev):
ref_avg[varname][jlev] = (ref_time_avg[varname][jlev,:] * weights).sum()
else:
ref_avg[varname] = (ref_time_avg[varname] * weights).sum()
test_avgs[varname] = []
diff_avgs[varname] = []
rmses[varname] = []
for i in range(len(test_cases)):
if test_cases[i].day_is_available(day):
if varname in vars_3D:
test_avgs[varname].append(np.zeros((nlev,)))
diff_avgs[varname].append(np.zeros((nlev,)))
rmses[varname].append(np.zeros((nlev,)))
for jlev in range(nlev):
test_avgs[varname][-1][jlev] = (test_time_avgs[i][varname][jlev,:] * weights).sum()
diff_avgs[varname][-1][jlev] = (diff_time_avgs[i][varname][jlev,:] * weights).sum()
rmses[varname][-1][jlev] = np.sqrt((diff_time_avgs[i][varname][jlev,:]**2 * weights).sum())
else:
test_avgs[varname].append((test_time_avgs[i][varname] * weights).sum())
diff_avgs[varname].append((diff_time_avgs[i][varname] * weights).sum())
rmses[varname].append(np.sqrt((diff_time_avgs[i][varname]**2 * weights).sum()))
assert np.isclose(diff_avgs[varname][i], test_avgs[varname][i] - ref_avg[varname]).all(), \
"Problem with diff of variable {} from case {}".format(varname, TEST_CASES[i].short_name)
else:
test_avgs[varname].append(None)
diff_avgs[varname].append(None)
rmses[varname].append(None)
return (ref_avg, test_avgs, diff_avgs, rmses)
# Possible ways to extract a 2D section start here:
def identity(x):
return x
def slice_at(level, x):
return x[:,level]
def plot_vars_over_time(names, units, scales, log_plot_names):
ref_means = dict()
test_means = dict()
diff_means = dict()
rmses = dict()
for name in names:
if name in vars_3D:
ref_means[name] = np.zeros((ndays, nlev))
test_means[name] = np.zeros((case_num, ndays, nlev))
diff_means[name] = np.zeros((case_num, ndays, nlev))
rmses[name] = np.zeros((case_num, ndays, nlev))
else:
ref_means[name] = np.zeros((ndays,))
test_means[name] = np.zeros((case_num, ndays))
diff_means[name] = np.zeros((case_num, ndays))
rmses[name] = np.zeros((case_num, ndays))
for iday in range(ndays):
day = days[iday]
print("On day: ", day, file=log_file, flush=True)
ref_mean, test_case_means, diff_case_means, case_rmses = calc_var_stats(REF_CASE, TEST_CASES, day, names)
for name in names:
ref_means[name][iday] = ref_mean[name]*scales[name]
for i in range(case_num):
if TEST_CASES[i].day_is_available(day):
test_means[name][i,iday] = test_case_means[name][i]*scales[name]
diff_means[name][i,iday] = diff_case_means[name][i]*scales[name]
rmses[name][i,iday] = case_rmses[name][i]*scales[name]
for name in names:
plot_name = name
if name in plot_names:
plot_name = plot_names[name]
get_2D = identity
if name in vars_3D:
get_2D = partial(slice_at, nlev-1)
if name in log_plot_names:
plot_var = plt.semilogy
else:
plot_var = plt.plot
for i in range(case_num):
test_plot_var = get_2D(test_means[name][i])
start_ind = TEST_CASES[i].start_day - START_DAY
end_ind = TEST_CASES[i].end_day - START_DAY + 1
plot_var(days[start_ind:end_ind],
test_plot_var[start_ind:end_ind],
label=TEST_CASES[i].short_name,
color=STYLES[TEST_CASES[i].short_name][0],
linestyle=STYLES[TEST_CASES[i].short_name][1])
ref_plot_var = get_2D(ref_means[name])
plot_var(days, ref_plot_var, label=REF_CASE.short_name, color='k')
plt.axis('tight')
plt.xlabel("day")
plt.ylabel("Mean {} ({})".format(plot_name, units[name]))
plt.savefig('{}_time{}.png'.format(name, suffix))
plt.close()
for i in range(case_num):
diff_plot_var = get_2D(diff_means[name][i])
start_ind = TEST_CASES[i].start_day - START_DAY
end_ind = TEST_CASES[i].end_day - START_DAY + 1
plot_var(days[start_ind:end_ind],
diff_plot_var[start_ind:end_ind],
label=TEST_CASES[i].short_name,
color=STYLES[TEST_CASES[i].short_name][0],
linestyle=STYLES[TEST_CASES[i].short_name][1])
plt.axis('tight')
plt.xlabel("day")
plt.ylabel("Mean {} difference ({})".format(plot_name, units[name]))
plt.savefig('{}_diff_time{}.png'.format(name, suffix))
plt.close()
for i in range(case_num):
rmse_plot_var = get_2D(rmses[name][i])
start_ind = TEST_CASES[i].start_day - START_DAY
end_ind = TEST_CASES[i].end_day - START_DAY + 1
plot_var(days[start_ind:end_ind],
rmse_plot_var[start_ind:end_ind],
label=TEST_CASES[i].short_name,
color=STYLES[TEST_CASES[i].short_name][0],
linestyle=STYLES[TEST_CASES[i].short_name][1])
plt.axis('tight')
plt.xlabel("day")
plt.ylabel("{} RMSE ({})".format(plot_name, units[name]))
plt.savefig('{}_rmse_time{}.png'.format(name, suffix))
plt.close()
print(name, " has reference mean: ", sum(ref_plot_var[START_AVG_DAY-START_DAY:END_AVG_DAY-START_DAY+1])/navgdays,
file=log_file)
for i in range(case_num):
case_name = TEST_CASES[i].short_name
test_plot_var = get_2D(test_means[name][i])
diff_plot_var = get_2D(diff_means[name][i])
print(name, " has case ", case_name, " mean: ", sum(test_plot_var[START_AVG_DAY-START_DAY:END_AVG_DAY-START_DAY+1])/navgdays,
file=log_file)
print(name, " has difference mean: ", sum(diff_plot_var[START_AVG_DAY-START_DAY:END_AVG_DAY-START_DAY+1])/navgdays,
file=log_file)
if USE_PRESAER and "LT" in case_name:
compare_name = TEST_CASES[i-1].short_name
compare_plot_var = get_2D(test_means[name][i-1])
print(name, " has mean difference from ", compare_name, ": ",
sum(test_plot_var[START_AVG_DAY-START_DAY:END_AVG_DAY-START_DAY+1])/navgdays - \
sum(compare_plot_var[START_AVG_DAY-START_DAY:END_AVG_DAY-START_DAY+1])/navgdays,
file=log_file)
plot_names = {
'LWCF': "longwave cloud forcing",
'SWCF': "shortwave cloud forcing",
'PRECC': "convective precipitation",
'PRECL': "large-scale precipitation",
'PRECT': "total precipitation",
'TGCLDIWP': "ice water path",
'TGCLDLWP': "liquid water path",
'CLDTOT': "cloud area fraction",
'CLDLOW': "low cloud area fraction",
'CLDMED': "mid-level cloud area fraction",
'CLDHGH': "high cloud area fraction",
'LHFLX': "latent heat flux",
'SHFLX': "sensible heat flux",
'TAU': "surface wind stress",
'TS': "surface temperature",
'PSL': "sea level pressure",
'OMEGA500': "vertical velocity at 500 mb",
'U10': "10 meter wind speed",
'RELHUM': "surface relative humidity",
'Q': "specific humidity",
'CLDLIQ': "lowest level cloud liquid",
'TMQ': "precipitable water",
'CLOUD': "lowest level cloud fraction",
'T': "lowest level temperature",
}
units = {
'LWCF': r'$W/m^2$',
'SWCF': r'$W/m^2$',
'PRECC': r'$mm/day$',
'PRECL': r'$mm/day$',
'PRECT': r'$mm/day$',
'TGCLDIWP': r'$g/m^2$',
'TGCLDLWP': r'$g/m^2$',
'AODABS': r'units?',
'AODUV': r'units?',
'AODVIS': r'units?',
'FLDS': r'$W/m^2$',
'FLNS': r'$W/m^2$',
'FLNSC': r'$W/m^2$',
'FLNT': r'$W/m^2$',
'FLNTC': r'$W/m^2$',
'FLUT': r'$W/m^2$',
'FLUTC': r'$W/m^2$',
'FSDS': r'$W/m^2$',
'FSDSC': r'$W/m^2$',
'FSNS': r'$W/m^2$',
'FSNSC': r'$W/m^2$',
'FSNT': r'$W/m^2$',
'FSNTC': r'$W/m^2$',
'FSNTOA': r'$W/m^2$',
'FSNTOAC': r'$W/m^2$',
'FSUTOA': r'$W/m^2$',
'FSUTOAC': r'$W/m^2$',
'CLDTOT': r'fraction',
'CLDLOW': r'fraction',
'CLDMED': r'fraction',
'CLDHGH': r'fraction',
'OMEGA500': r'Pa/s',
'LHFLX': r'$W/m^2$',
'SHFLX': r'$W/m^2$',
'TAU': r'$N/m^2$',
'TAUX': r'$N/m^2$',
'TAUY': r'$N/m^2$',
'TS': r'$K$',
'PSL': r'$Pa$',
'U10': r'$m/s$',
'RELHUM': r'%',
'Q': r'$g/kg$',
'CLDLIQ': r"$g/kg$",
'TMQ': r'$kg/m^2$',
'CLOUD': r'$fraction$',
'T': r'$K$',
}
names = list(units.keys())
scales = dict()
for name in names:
scales[name] = 1.
scales['TGCLDIWP'] = 1000.
scales['TGCLDLWP'] = 1000.
scales['PRECC'] = 1000.*86400.
scales['PRECL'] = 1000.*86400.
scales['PRECT'] = 1000.*86400.
scales['Q'] = 1000.
scales['CLDLIQ'] = 1000.
vars_3D = [
'RELHUM',
'Q',
'CLDLIQ',
'T',
'CLOUD',
]
log_plot_names = []#'AODABS', 'AODVIS', 'AODUV']
plot_vars_over_time(names, units, scales, log_plot_names)
log_file.close()