forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbidirectional_breadth_first_search.py
180 lines (145 loc) · 5.6 KB
/
bidirectional_breadth_first_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
https://en.wikipedia.org/wiki/Bidirectional_search
"""
import time
from typing import List, Tuple
grid = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class Node:
def __init__(self, pos_x, pos_y, goal_x, goal_y, parent):
self.pos_x = pos_x
self.pos_y = pos_y
self.pos = (pos_y, pos_x)
self.goal_x = goal_x
self.goal_y = goal_y
self.parent = parent
class BreadthFirstSearch:
"""
>>> bfs = BreadthFirstSearch((0, 0), (len(grid) - 1, len(grid[0]) - 1))
>>> (bfs.start.pos_y + delta[3][0], bfs.start.pos_x + delta[3][1])
(0, 1)
>>> [x.pos for x in bfs.get_successors(bfs.start)]
[(1, 0), (0, 1)]
>>> (bfs.start.pos_y + delta[2][0], bfs.start.pos_x + delta[2][1])
(1, 0)
>>> bfs.retrace_path(bfs.start)
[(0, 0)]
>>> bfs.search() # doctest: +NORMALIZE_WHITESPACE
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)]
"""
def __init__(self, start, goal):
self.start = Node(start[1], start[0], goal[1], goal[0], None)
self.target = Node(goal[1], goal[0], goal[1], goal[0], None)
self.node_queue = [self.start]
self.reached = False
def search(self) -> List[Tuple[int]]:
while self.node_queue:
current_node = self.node_queue.pop(0)
if current_node.pos == self.target.pos:
self.reached = True
return self.retrace_path(current_node)
successors = self.get_successors(current_node)
for node in successors:
self.node_queue.append(node)
if not (self.reached):
return [(self.start.pos)]
def get_successors(self, parent: Node) -> List[Node]:
"""
Returns a list of successors (both in the grid and free spaces)
"""
successors = []
for action in delta:
pos_x = parent.pos_x + action[1]
pos_y = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(pos_x, pos_y, self.target.pos_y, self.target.pos_x, parent)
)
return successors
def retrace_path(self, node: Node) -> List[Tuple[int]]:
"""
Retrace the path from parents to parents until start node
"""
current_node = node
path = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x))
current_node = current_node.parent
path.reverse()
return path
class BidirectionalBreadthFirstSearch:
"""
>>> bd_bfs = BidirectionalBreadthFirstSearch((0, 0), (len(grid) - 1,
... len(grid[0]) - 1))
>>> bd_bfs.fwd_bfs.start.pos == bd_bfs.bwd_bfs.target.pos
True
>>> bd_bfs.retrace_bidirectional_path(bd_bfs.fwd_bfs.start,
... bd_bfs.bwd_bfs.start)
[(0, 0)]
>>> bd_bfs.search() # doctest: +NORMALIZE_WHITESPACE
[(0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 3),
(2, 4), (3, 4), (3, 5), (3, 6), (4, 6), (5, 6), (6, 6)]
"""
def __init__(self, start, goal):
self.fwd_bfs = BreadthFirstSearch(start, goal)
self.bwd_bfs = BreadthFirstSearch(goal, start)
self.reached = False
def search(self) -> List[Tuple[int]]:
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
current_fwd_node = self.fwd_bfs.node_queue.pop(0)
current_bwd_node = self.bwd_bfs.node_queue.pop(0)
if current_bwd_node.pos == current_fwd_node.pos:
self.reached = True
return self.retrace_bidirectional_path(
current_fwd_node, current_bwd_node
)
self.fwd_bfs.target = current_bwd_node
self.bwd_bfs.target = current_fwd_node
successors = {
self.fwd_bfs: self.fwd_bfs.get_successors(current_fwd_node),
self.bwd_bfs: self.bwd_bfs.get_successors(current_bwd_node),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(node)
if not self.reached:
return [self.fwd_bfs.start.pos]
def retrace_bidirectional_path(
self, fwd_node: Node, bwd_node: Node
) -> List[Tuple[int]]:
fwd_path = self.fwd_bfs.retrace_path(fwd_node)
bwd_path = self.bwd_bfs.retrace_path(bwd_node)
bwd_path.pop()
bwd_path.reverse()
path = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
init = (0, 0)
goal = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
start_bfs_time = time.time()
bfs = BreadthFirstSearch(init, goal)
path = bfs.search()
bfs_time = time.time() - start_bfs_time
print("Unidirectional BFS computation time : ", bfs_time)
start_bd_bfs_time = time.time()
bd_bfs = BidirectionalBreadthFirstSearch(init, goal)
bd_path = bd_bfs.search()
bd_bfs_time = time.time() - start_bd_bfs_time
print("Bidirectional BFS computation time : ", bd_bfs_time)