forked from neetcode-gh/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0004-median-of-two-sorted-arrays.java
81 lines (70 loc) · 2.24 KB
/
0004-median-of-two-sorted-arrays.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/*Brute-force solution (Linear)*/
/*
// Runtime: O(m+n)
// Extra Space: O(m+n)
//
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length;
int n = nums2.length;
int[] nums = new int[m+n];
int i = 0, j = 0;
int k = 0;
while (i<m && j<n) {
if (nums1[i]<nums2[j]) nums[k++] = nums1[i++];
else nums[k++] = nums2[j++];
}
for (; i<m; i++) nums[k++] = nums1[i];
for (; j<n; j++) nums[k++] = nums2[j];
if ((m+n)%2 == 0) {
return ((float)nums[(m+n-1)/2]+(float)nums[(m+n)/2])/(float)2;
} else return (float)nums[(m+n-1)/2];
}
}
*/
/* Optimized solution (Logarithmic) */
// Runtime: O(log(min(m,n)))
// Extra Space: O(1)
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length;
int n = nums2.length;
if (m > n) {
return findMedianSortedArrays(nums2, nums1);
}
int total = m + n;
int half = (total + 1) / 2;
int left = 0;
int right = m;
var result = 0.0;
while (left <= right) {
int i = left + (right - left) / 2;
int j = half - i;
// get the four points around possible median
int left1 = (i > 0) ? nums1[i - 1] : Integer.MIN_VALUE;
int right1 = (i < m) ? nums1[i] : Integer.MAX_VALUE;
int left2 = (j > 0) ? nums2[j - 1] : Integer.MIN_VALUE;
int right2 = (j < n) ? nums2[j] : Integer.MAX_VALUE;
// partition is correct
if (left1 <= right2 && left2 <= right1) {
// even
if (total % 2 == 0) {
result =
(Math.max(left1, left2) + Math.min(right1, right2)) /
2.0;
// odd
} else {
result = Math.max(left1, left2);
}
break;
}
// partition is wrong (update left/right pointers)
else if (left1 > right2) {
right = i - 1;
} else {
left = i + 1;
}
}
return result;
}
}