-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathncdf.R
1011 lines (814 loc) · 33.4 KB
/
ncdf.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#' Read NetCDF into stars object
#'
#' Read data from a file (or source) using the NetCDF library directly.
#'
#' The following logic is applied to coordinates. If any coordinate axes have
#' regularly spaced coordinate variables they are reduced to the
#' offset/delta form with 'affine = c(0, 0)', otherwise the values of the coordinates
#' are stored and used to define a rectilinear grid.
#'
#' If the data has two or more dimensions and the first two are regular
#' they are nominated as the 'raster' for plotting.
#'
#' If the \code{curvilinear} argument is used it specifies the 2D arrays
#' containing coordinate values for the first two dimensions of the data read. It is currently
#' assumed that the coordinates are 2D and that they relate to the first two dimensions in
#' that order.
#' @examples
#' f <- system.file("nc/reduced.nc", package = "stars")
#' if (require(ncmeta, quietly = TRUE)) {
#' read_ncdf(f)
#' read_ncdf(f, var = c("anom"))
#' read_ncdf(f, ncsub = cbind(start = c(1, 1, 1, 1), count = c(10, 12, 1, 1)))
#' }
#'
#' @param .x NetCDF file or source as a character vector or an nc_proxy object.
#' @param ... ignored
#' @param var variable name or names (they must be on matching grids)
#' @param ncsub matrix of start, count columns (see Details)
#' @param curvilinear length two character named vector with names of variables holding
#' longitude and latitude values for all raster cells. `stars` attempts to figure out appropriate
#' curvilinear coordinates if they are not supplied.
#' @param eps numeric; dimension value increases are considered identical when they differ less than \code{eps}
#' @param ignore_bounds logical; should bounds values for dimensions, if present, be ignored?
#' @param make_time if \code{TRUE} (the default), an attempt is made to provide a date-time class from the "time" variable
#' @param make_units if \code{TRUE} (the default), an attempt is made to set the units property of each variable
#' @param proxy logical; if \code{TRUE}, an object of class \code{stars_proxy} is read which contains array
#' metadata only; if \code{FALSE} the full array data is read in memory. If not set, defaults to \code{TRUE}
#' when the number of cells to be read is larger than \code{options(stars.n_proxy)}, or to 1e8 if that option was not set.
#' @param downsample integer; number of cells to omit between samples along each dimension.
#' e.g. \code{c(1,1,2)} would return every other cell in x and y and every third cell
#' in the third dimension (z or t). If 0, no downsampling is applied. Note that this transformation
#' is applied AFTER NetCDF data are read using st_downsample. As such, if proxy=TRUE, this
#' option is ignored.
#' @details
#' If \code{var} is not set the first set of variables on a shared grid is used.
#'
#' \code{start} and \code{count} columns of ncsub must correspond to the variable dimension (nrows)
#' and be valid index using \code{\link[RNetCDF]{var.get.nc}} convention (start is 1-based). If the count value
#' is \code{NA} then all steps are included. Axis order must match that of the variable/s being read.
#' @export
#' @examples
#' if (require(ncmeta, quietly = TRUE)) {
#' #' precipitation data in a curvilinear NetCDF
#' prec_file = system.file("nc/test_stageiv_xyt.nc", package = "stars")
#' prec = read_ncdf(prec_file, curvilinear = c("lon", "lat"), ignore_bounds = TRUE)
#' }
#'
#' ##plot(prec) ## gives error about unique breaks
#' ## remove NAs, zeros, and give a large number
#' ## of breaks (used for validating in detail)
#' qu_0_omit = function(x, ..., n = 22) {
#' x = units::drop_units(na.omit(x))
#' c(0, quantile(x[x > 0], seq(0, 1, length.out = n)))
#' }
#' if (require(dplyr, quietly = TRUE)) {
#' prec_slice = slice(prec, index = 17, along = "time")
#' plot(prec_slice, border = NA, breaks = qu_0_omit(prec_slice[[1]]), reset = FALSE)
#' nc = sf::read_sf(system.file("gpkg/nc.gpkg", package = "sf"), "nc.gpkg")
#' plot(st_geometry(nc), add = TRUE, reset = FALSE, col = NA)
#' }
read_ncdf = function(.x, ..., var = NULL, ncsub = NULL, curvilinear = character(0),
eps = sqrt(.Machine$double.eps), ignore_bounds = FALSE, make_time = TRUE, make_units = TRUE,
proxy = NULL, downsample = 0) {
if (!requireNamespace("ncmeta", quietly = TRUE))
stop("package ncmeta required, please install it first") # nocov
if (!requireNamespace("RNetCDF", quietly = TRUE))
stop("package RNetCDF required, please install it first") # nocov
if(inherits(.x, "nc_proxy")) {
# grab the source file and all variables needed.
x <- as.character(.x[[1]]) # FIXME: only supports one data source.
var <- names(.x)
proxy_dimensions <- st_dimensions(.x)
nc_prj <- sf::st_crs(.x)
if(!is.null(ncsub)) {
warning("ncsub ignored when .x is class nc_proxy")
ncsub <- NULL
}
} else {
x <- .x
proxy_dimensions <- NULL
}
# Get all the nc metadata
meta <- .fix_meta(ncmeta::nc_meta(x))
if(.is_netcdf_cf_dsg(meta)) {
if (!requireNamespace("ncdfgeom", quietly = TRUE))
stop("package ncdfgeom required, please install it first") # nocov
if(!is.null(proxy) && proxy) warning("proxy behavior not supported for timeseries netcdf")
geom <- .get_geom_name(meta)
return(st_as_stars(ncdfgeom::read_timeseries_dsg(x), sf_geometry = geom))
}
# Get relevant variables
var <- .get_vars(var, meta)
rep_var <- var[1L]
# Get coordinate variable info
all_coord_var <- ncmeta::nc_coord_var(x)
if(ncol(all_coord_var) == 0) all_coord_var <- data.frame(variable = NA, X = NA, Y = NA,
Z = NA, T = NA, bounds = NA)
coord_var <- .clean_coord_var(all_coord_var, rep_var, meta, curvilinear)
canon_order <- c("X", "Y", "Z", "T")[!is.na(coord_var[c("X", "Y", "Z", "T")])]
curvilinear <- if(coord_var$curvilinear) {
c(X = coord_var$X, Y = coord_var$Y) } else character(0)
# Get dimensions for representative var in correct axis order.
dims <- .get_dims(meta, rep_var, coord_var, meta$axis, canon_order)
# Validate that ncsub matches dims
dims <- .add_ncsub(dims, ncsub)
nc <- RNetCDF::open.nc(x)
on.exit(RNetCDF::close.nc(nc), add = TRUE)
# Get coordinates from netcdf or create them
coords <- .get_coords(nc, dims)
coords <- .clean_coords(coords, coord_var, meta$attribute, eps)
# Figure out if we have a raster or not
raster <- .get_nc_raster(coords)
# Get matcher for netcdf requests
dimid_matcher <- .get_dimid_matcher(nc, coord_var, var)
if(!is.null(proxy_dimensions)) {
tdim <- if("T" %in% dims$axis) {
tmeta <- .get_time_meta(coord_var, rep_var, meta)
tvals <- coords[[which(dims$axis == "T")]]
tdim <- create_dimension(from = 1, to = length(tvals))
tdim$values <- tvals
make_cal_time2(tdim,
time_unit = tmeta$tunit,
cal = tmeta$calendar)
} else NULL
dims <- .update_dims(dims, proxy_dimensions, coords, tdim)
coords <- .get_coords(nc, dims)
coords <- .clean_coords(coords, coord_var, meta$attributes, eps)
}
pull <- .should_pull(proxy,
array_size = prod(dims[, "count", drop = TRUE]),
num_vars = length(var))
out_data <- if(pull) {
# Get all the data from the nc file
.set_nc_units(.get_data(nc, var, dims, dimid_matcher, pull = pull),
meta$attribute, make_units)
} else {
# Just return the source file for each variable.
setNames(as.list(rep(x, length(var))), var)
}
# Create stars dimensions object
if(is.null(nc_dim <- dim(out_data[[1]]))) nc_dim <- dims$length
dimensions <- create_dimensions(setNames(nc_dim, dims$name),
raster)
dimensions <- .get_nc_dimensions(dimensions,
coord_var = all_coord_var,
coords = coords,
nc = nc,
dims = dims,
var_names = meta$variable$name,
curvilinear,
eps = eps,
ignore_bounds = ignore_bounds,
atts = meta$attribute)
dimensions <- .get_nc_time(dimensions, make_time,
coord_var, rep_var, meta)
if (is.character(out_data[[1]])) {
# this is a proxy
out_data <- st_stars_proxy(out_data, dimensions, NA_value = NA_real_, resolutions = NULL)
class(out_data) <- c("nc_proxy", "stars_proxy", "stars")
} else {
# Make initial response data
out_data <- st_stars(out_data, dimensions)
}
if(is.null(proxy_dimensions)) {
if(length(curvilinear) == 2) {
cv <- curvilinear[1]
} else if (length(attr(coords, "cv")) > 0) {
cv <- attr(coords, "cv")[1]
} else {
cv <- all_coord_var[all_coord_var$variable == rep_var, ]$X
}
nc_prj <- .get_nc_projection(meta$attribute, rep_var, cv)
}
st_crs(out_data) <- nc_prj
# Add curvilinear and return
if (length(curvilinear) == 2) {
curvi_coords = .get_curvilinear_coords(curvilinear, dimensions, nc, dims)
out_data <- add_curvilinear(out_data, curvilinear = curvi_coords, nc_prj)
}
if(!all(downsample == 0)) {
out_data <- st_downsample(out_data, downsample)
}
out_data
}
.fix_meta <- function(meta) {
nas <- is.na(meta$axis$dimension)
if (any(nas)) meta$axis$dimension[nas] <- -1 # nocov
if(!is.null(names(meta$attribute))) {
names(meta$attribute)[names(meta$attribute) == "attribute"] <- "name" # future proofing.
}
meta
}
.is_regular <- function(coords_list, eps) {
sapply(coords_list, function(x) regular_intervals(x, epsilon = eps))
}
.unique_fuzz <- function(x, eps) {
u = unique(x)
if (all(diff(sort(u)) < eps))
mean(x) # rather than mean(u)
else
u
}
.as_rectilinear = function(d) {
ed = expand_dimensions(d, center = FALSE)
for (i in attr(d, "raster")$dimensions) {
if (!is.na(d[[ i ]]$offset)) {
d[[i]]$values = as_intervals(ed[[i]], add_last = TRUE)
d[[i]]$offset = d[[i]]$delta = NA
}
}
d
}
.should_pull <- function(proxy, array_size, num_vars,
n_proxy = options("stars.n_proxy")[[1]] %||% 1.e8) {
if(is.null(proxy)) {
if(array_size > n_proxy) {
pull <- FALSE
message("Large netcdf source found, returning proxy object.")
} else {
pull <- TRUE
message(paste("Will return stars object with", array_size, "cells."))
}
} else {
pull <- !proxy
}
if(pull & array_size > n_proxy)
warning("Large netcdf source will be requested. Consider using stars proxy.")
pull
}
.get_vars <- function(var, meta) {
if (is.null(var)) {
ix <- 1
if (meta$grid$grid[ix] == "S") {
ix <- which(!meta$grid$grid == "S")[1L] # nocov
if (length(ix) < 1) stop("only scalar variables found, not yet supported") # nocov
}
grd = meta$grid$grid[which.max(nchar(meta$grid$grid))]
var = meta$grid$variables[[match(grd, meta$grid$grid)]]$variable
message(sprintf("no 'var' specified, using %s", paste(var, collapse = ", ")))
other_vars <- setdiff(meta$variable$name, var)
if (length(other_vars) > 0)
message(sprintf("other available variables:\n %s", paste(other_vars, collapse = ", ")))
}
return(var)
}
.get_grid_mapping <- function(atts, rep_var) {
if(!is.null(atts)) {
suppressWarnings(ncmeta::nc_grid_mapping_atts(atts, rep_var))
} else {
list()
}
}
.get_nc_projection <- function(atts, rep_var, rep_coord_var) {
nc_grid_mapping <- .get_grid_mapping(atts, rep_var)
if(length(nc_grid_mapping) == 0) {
if(.is_degrees(atts, rep_coord_var)) {
message(paste("No projection information found in nc file. \n",
"Coordinate variable units found to be degrees, \n",
"assuming WGS84 Lat/Lon."))
st_crs('OGC:CRS84')
} else {
warning("No projection information found in nc file.")
st_crs(NULL)
}
} else {
tryCatch({
cv_units <- .get_gm_units(atts, rep_coord_var)
base_gm <- ncmeta::nc_gm_to_prj(nc_grid_mapping)
base_gm <- paste0(gsub("\\+units=m ", "", base_gm),
" +units=", cv_units)
st_crs(base_gm)
}, error = function(e) {
warning(paste0("failed to create crs based on grid mapping\n",
"and coordinate variable units. Will return NULL crs.\n",
"Original error: \n", e))
st_crs(NULL)
})
}
}
.is_degrees <- function(atts, var) {
units <- .get_attributes(atts, "units", var)$value[[1]]
!is.null(units) && grepl("degrees", units, ignore.case = TRUE)
}
.get_gm_units <- function(atts, var) {
if(.is_degrees(atts, var)) {
"degrees"
} else {
.get_attributes(atts, "units", var)$value[[1]]
}
}
.clean_coord_var <- function(c_v, var, meta, curvilinear) {
c_v <- c_v[c_v$variable == var, ]
if(nrow(c_v) == 0) c_v[1, ] <- NA
check_curvi <- .check_curvilinear(c_v, var, meta$variable, curvilinear)
if(length(curvilinear)) {
c_v$X <- rep(check_curvi[1], nrow(c_v))
c_v$Y <- rep(check_curvi[2], nrow(c_v))
}
not_na <- apply(c_v, 1, function(x) sum(!is.na(x)))
c_v <- c_v[which(not_na == max(not_na)), ][1, ]
has_prj <- length(.get_grid_mapping(meta$attribute, var)) != 0
if(length(curvilinear) > 0) {
if(length(check_curvi) == 0) stop("Curvilinear coordinate variables provided by not found in file.")
c_v <- c_v[c_v$variable == var & c_v$X == check_curvi[1], ]
c_v$curvilinear <- TRUE
} else if(nrow(c_v) > 1 | length(check_curvi) == 2) {
# Should use convenience function?
sn_atts <- meta$attribute[meta$attribute$name == "standard_name", ]
auxiliary_x <- sn_atts[grepl("projection_x_coordinate", sn_atts$value), ]$variable
auxiliary_y <- sn_atts[grepl("projection_y_coordinate", sn_atts$value), ]$variable
if(length(auxiliary_x) > 0 && length(auxiliary_y) > 0 &&
auxiliary_x %in% c_v$X && auxiliary_y %in% c_v$Y &
has_prj) {
c_v <- c_v[c_v$variable == var & c_v$X == auxiliary_x, ]
c_v$curvilinear <- FALSE
} else if (length(check_curvi) == 2) {
c_v <- c_v[c_v$variable == var & c_v$X == check_curvi[1], ]
c_v$curvilinear <- TRUE
} else{
c_v <- c_v[1, ]
warning(paste("Found two coordinate variable pairs. Chosing:",
paste(as.character(c_v)[2:5], collapse = " "),
"for", as.character(c_v)[1])) #nocov
}
} else {
c_v$curvilinear <- FALSE
}
return(c_v)
}
.check_curvilinear <- function(coord_var, var, variables, curvilinear) {
if(length(curvilinear) > 0) {
if(!all(curvilinear %in% variables$name)) stop("Curvilinear variables not found in file.")
if(!length(curvilinear) == 2 | all(!is.character(curvilinear))) stop("Curvilinear input must be a length two character vector.")
if(all(variables$ndims[match(curvilinear, variables$name)] == 2)) {
xy_coords <- coord_var[c("X", "Y")]
if(!curvilinear[1] %in% c(xy_coords$X, xy_coords$Y) | !curvilinear[2] %in% c(xy_coords$X, xy_coords$Y)) {
stop("Specified curvilinear coordinate variables not found as X/Y coordinate variables.")
} else {
if(!curvilinear[1] %in% xy_coords$X) {
curvilinear <- curvilinear[2:1]
}
return(stats::setNames(curvilinear, c("X", "Y")))
}
} else {
stop("Specified curvilinear coordinates are not 2-dimensional.")
}
}
# If we have X and Y coordvars to look at.
if (all(c("X", "Y") %in% names(coord_var))) {
# Actually look at this one.
XY_curvi = unlist(coord_var[coord_var$variable == var, ][c("X", "Y")])
if (all(!is.na(XY_curvi)) && # If all coordinate variables have 2 dims.
all(variables$ndims[match(XY_curvi, variables$name)] == 2)) {
return(XY_curvi)
} else {
return(character(0))
}
} else {
return(character(0))
}
}
#' Gets dimension info ensuring they are in an order suited to coordinate
#' variables that need to be subset appropriately.
#' @noRd
.get_dims <- function(meta, var, c_v, axis, canon_order) {
# This matches the axes of a given variable to the correct dimension
dims <-meta$dimension[match(meta$axis$dimension[meta$axis$variable == var],
meta$dimension$id), ]
dims$coord_var <- ""
dims$axis <- ""
rep_var_coordinates <- .get_attributes(meta$attribute, "coordinates", var)
if(!is.null(rep_var_coordinates)) {
rep_var_coordinates <- strsplit(rep_var_coordinates$value[[1]], " ")[[1]]
}
x_cv <- axis[axis$variable == c_v$X, ]
y_cv <- axis[axis$variable == c_v$Y, ]
if(nrow(x_cv) == 1 & nrow(y_cv) == 1) {
dims[dims$id == x_cv$dimension, ][c("coord_var", "axis")] <- list(x_cv$variable, "X")
dims[dims$id == y_cv$dimension, ][c("coord_var", "axis")] <- list(y_cv$variable, "Y")
}
dim_matcher <- axis[axis$variable == c_v$X, ]$dimension
if(length(dim_matcher) < 2) {
dim_matcher <- c(dim_matcher,
axis[axis$variable == c_v$Y, ]$dimension)
}
z_axis <- integer(0)
if(!is.na(c_v$Z)) {
z_cv <- axis[axis$variable == c_v$Z, ]
z_axis <- z_cv$dimension
dims[dims$id == z_cv$dimension, ][c("coord_var", "axis")] <- list(z_cv$variable, "Z")
dim_matcher <- c(dim_matcher, z_axis)
} else if(nrow(dims) == 4 & !c_v$curvilinear) {
z_axis <- unique(axis[!axis$variable %in% c(c_v$X, c_v$Y, c_v$T) &
!axis$dimension %in% dim_matcher, ]$dimension)
}
if(!is.na(c_v$T)) {
t_cv <- axis[axis$variable == c_v$T, ]
t_axis <- t_cv$dimension
dims[dims$id == t_cv$dimension, ][c("coord_var", "axis")] <- list(t_cv$variable, "T")
if(length(z_axis) > 1) {
z_axis <- z_axis[z_axis != t_axis]
}
dim_matcher <- c(dim_matcher, z_axis, t_axis)
}
if(all(!is.na(dim_matcher))) {
if(length(dim_matcher) != length(dims$id)) {
dim_matcher <- c(dim_matcher,
dims$id[!dims$id %in% dim_matcher])
dim_matcher <- unique(dim_matcher)
}
dims <- dims[match(dim_matcher, dims$id, nomatch = 0L), ]
}
return(dims)
}
#' Gets a list of dimension id matching indexes for use in
#' requesting data from a given NetCDF file.
#' @noRd
.get_dimid_matcher <- function(nc, coord_var, var) {
setNames(lapply(var, FUN = function(.v, c_v, nc) {
matcher <- NULL
if(all(!is.na(c_v[2:3]))) {
coordvar_dimids <- RNetCDF::var.inq.nc(nc, c_v$X)$dimids
if(length(coordvar_dimids) == 1) {
coordvar_dimids <- c(coordvar_dimids,
RNetCDF::var.inq.nc(nc, c_v$Y)$dimids)
}
if(!is.na(c_v$Z)) {
coordvar_dimids <- c(coordvar_dimids,
RNetCDF::var.inq.nc(nc, c_v$Z)$dimids)
}
if(!is.na(c_v$T)) {
coordvar_dimids <- c(coordvar_dimids,
RNetCDF::var.inq.nc(nc, c_v$T)$dimids)
}
var_dimids <- RNetCDF::var.inq.nc(nc, .v)$dimids
matcher <- match(coordvar_dimids, var_dimids)
if(!all(diff(matcher[1:2]) == 1)) {
warning("Non-canonical axis order found, attempting to correct.")
}
}
matcher
}, c_v = coord_var, nc = nc),
var)
}
.get_nc_var <- function(nc, .v, start, count) {
RNetCDF::var.get.nc(nc,
variable = .v,
start = start,
count = count,
collapse = FALSE, ## keep 1-dims
unpack = TRUE, ## offset and scale applied internally
rawchar = TRUE) ## needed for NC_CHAR, as per
}
.get_data <- function(nc, var, dims, dimid_matcher, pull = pull) {
out_data <- lapply(var, pull = pull, FUN = function(.v, pull) {
dm <- match(RNetCDF::var.inq.nc(nc, .v)$dimids,
dims[, "id", drop = TRUE])
if(is.null(dm)) dm <- c(1:nrow(dims))
request <- list(start = dims[, "start", drop = TRUE][dm],
count = dims[, "count", drop = TRUE][dm])
request$size <- prod(request$count)
request$dimid_match <- dm
request$axis <- dims$axis[dm]
if(pull) {
ret <- .get_nc_var(nc, .v, request$start, request$count)
if(length(dm) > 1 && !all(diff(dm[1:2]) == 1)) {
ret <- aperm(ret, dm)
}
}
return(ret)
})
## "../rasterwise/extdata/R13352.nc"
## https://github.com/hypertidy/tidync/issues/75
## check for NC_CHAR case
setNames(lapply(out_data, function(.v) {
if (mode(.v) == "raw") {
array(unlist(lapply(.v, rawToChar)), dims$length)
} else .v
}), var)
}
.get_attributes <- function(attribute, att, var = NULL) {
if(!is.null(var)) attribute <- attribute[attribute$variable == var, ]
if(att %in% attribute$name)
attribute[attribute$name == att, ]
else {
NULL
}
}
.add_ncsub <- function(dims, ncsub, proxy_dimensions) {
if (is.null(ncsub)) {
dims$start <- 1
dims$count <- dims$length
} else {
if (nrow(dims) != nrow(ncsub))
stop("input ncsub doesn't match available dims")
ix <- is.na(ncsub[, "count"])
if (any(ix)) ncsub[ix, "count"] <- dims$length[ix] - ncsub[ix, "start"] + 1
if (any(ncsub[, "start"] < 1) ||
any((ncsub[, "count"] - ncsub[, "start"] + 1) > dims$length))
stop("start or count out of bounds")
dims$start <- ncsub[, "start"]
dims$count <- ncsub[, "count"]
}
return(dims)
}
.set_nc_units <- function(data_list, nc_atts, make_units) {
# Get all the units
nc_units <- .get_attributes(nc_atts, "units")
if (!is.null(nc_units) && nrow(nc_units) > 0 && make_units) {
for (i in names(data_list)) {
if (i %in% nc_units$variable) {
uval <- unlist(nc_units$value[nc_units$variable == i])
if(is.numeric(data_list[[i]])) {
units(data_list[[i]]) <- try_as_units(uval[1L])
} else {
data_list[[i]]$units <- try_as_units(uval[1L])
}
}
}
}
return(data_list)
}
.get_coords <- function(nc, dims) {
## cannot assume we have COORDS style coordinate varibales
## - so create them as 1:length if needed
coords = setNames(vector("list", length(dims$name)), dims$name)
attr(coords, "cv") <- c()
for (ic in seq_along(coords)) {
subidx <- seq(dims$start[ic], length = dims$count[ic])
## create_dimvar means we can var_get it
## test checks if there's actuall a variable of the dim name
if (dims$name[ic] %in% ncmeta::nc_vars(nc)$name) {
coords[[ic]] <- RNetCDF::var.get.nc(nc, variable = dims$name[ic])[subidx]
attr(coords, "cv") <- c(attr(coords, "cv"), dims$name[ic])
} else {
coords[[ic]] <- subidx
}
}
return(coords)
}
.get_nc_raster <- function(coords) {
## can we create a raster?
raster = NULL
## which coords are regular
if (length(coords) > 1) {
raster = get_raster(affine = c(0, 0),
dimensions = names(coords)[1:2], curvilinear = FALSE)
}
return(raster)
}
.clean_coords <- function(coords, coord_var, atts, eps) {
## hack longitudes for #277
if (any(lon_coord <- grepl("lon", coord_var$X, ignore.case = TRUE))) {
lon_coord <- coord_var$X[lon_coord][1]
lons <- coords[[lon_coord]]
if (!is.null(lons) && !regular_intervals(lons, epsilon = eps) &&
.is_degrees(atts, lon_coord) &&
lons[1L] > 180 && min(lons) > 0) {
coords[[lon_coord]] <- ((coords[[lon_coord]] + 180) %% 360) - 180
} else if(!is.null(lons) && .is_degrees(atts, lon_coord) &&
max(lons) > 180 && min(lons) > 180) {
coords[[lon_coord]] <- ((coords[[lon_coord]] + 180) %% 360) - 180
} else if(!is.null(lons) && .is_degrees(atts, lon_coord) &&
max(lons) > 180) {
message(paste("0-360 longitude crossing the international date",
"line encountered.\nLongitude coordinates will be",
"0-360 in output."))
}
}
coords
}
.get_nc_dimensions <- function(dimensions, coord_var, coords, nc, dims,
var_names, curvilinear, eps, ignore_bounds,
atts) {
to_rectilinear = FALSE
regular <- .is_regular(coords, eps)
for (i in seq_along(coords)) {
from_to <- dimensions[[i]]$from:dimensions[[i]]$to
try_bounds <- names(coords)[i] %in% var_names &&
!ignore_bounds &&
length(bounds <- coord_var[coord_var$variable == names(coords)[i], ]$bounds) > 0 &&
bounds %in% var_names
if (try_bounds) {
bounds = RNetCDF::var.get.nc(nc, bounds)
if (!is.matrix(bounds)) # single instance, returns a vector
bounds = matrix(bounds, nrow = 2)
if(!bounds[1, 1] < coords[[i]][1] | !bounds[2, 1] > coords[[i]][1]) {
warning(paste("bounds not enveloping", names(coords)[i], "coordinates. Ignoring."))
try_bounds <- FALSE
} else {
is_reg = ncol(bounds) > 1 && length(u <- .unique_fuzz(apply(bounds, 2, diff), eps)) == 1 &&
length(v <- .unique_fuzz(diff(bounds[1,]), eps)) == 1
if (is_reg && abs(u + v) < eps) {
warning(paste("bounds for", names(coords)[i], "seem to be reversed; reverting them"))
bounds = apply(bounds, 2, sort) # should not be needed according to CF, but see #133
u = v
}
if (is_reg && abs(v - u) < eps) {
dimensions[[i]]$offset = bounds[1,1]
dimensions[[i]]$delta = v
} else {
dimensions[[i]]$values = make_intervals(bounds[1, from_to], bounds[2,from_to])
dimensions[[i]]$point = FALSE
if (i %in% 1:2 && length(curvilinear) < 1) # FIXME: ? hard-coding here that lon lat are in the first two dimensions:
to_rectilinear = TRUE
}
}
}
if (regular[i] & !try_bounds) {
mdc = mean(diff(coords[[i]]))
coord_name = names(coords)[i]
t_dim = coord_var[coord_var$variable == coord_name,]$T
if (is.null(t_dim) || length(t_dim) == 0)
t_dim = NA_character_
# https://github.com/r-spatial/stars/issues/378
if (!is.na(t_dim) && names(coords)[i] == t_dim)
dimensions[[i]]$offset[1L] = coords[[i]][1]
else
dimensions[[i]]$offset[1L] = coords[[i]][1] - mdc/2
## NaN for singleton dims, but that seems ok unless we have explicit interval?
dimensions[[i]]$delta[1L] = mdc
} else {
dimensions[[i]]$values = coords[[i]][from_to]
## offset/delta for fall-back index (and for NA test )
## https://github.com/r-spatial/stars/blob/master/R/dimensions.R#L294-L303
dimensions[[i]]$offset[1L] = NA_real_
dimensions[[i]]$delta[1L] = NA_real_
}
}
if (to_rectilinear)
dimensions = .as_rectilinear(dimensions)
return(dimensions)
}
.get_time_meta <- function(coord_var, var, meta) {
TIME_name = as.character(na.omit(unlist(
coord_var[coord_var$variable == var, ][c("T")])))
if(!length(TIME_name)) {
list(tname = NULL, calendar = NULL, tunit = NULL)
} else {
atts = meta$attribute[meta$attribute$variable == TIME_name, ]
## might not exist, so default to NULL
calendar = unlist(atts$value[atts$name == "calendar"])[1L]
tunit = unlist(atts$value[atts$name == "units"])[1L]
list(tname = TIME_name, calendar = calendar, tunit = tunit)
}
}
.get_nc_time <- function(dimensions, make_time, coord_var, var, meta) {
# sort out time -> POSIXct:
if (make_time) {
if (all("T" %in% names(coord_var))) {
tmeta <- .get_time_meta(coord_var, var, meta)
if (!is.na(tmeta$tname) && length(tmeta$tname) == 1L &&
meta$variable$ndims[match(tmeta$tname, meta$variable$name)] == 1) {
if (tmeta$tname %in% names(dimensions)) {
tdim <- NULL
if (is.null(tmeta$tunit) || inherits(tmeta$tunit, "try-error")) {
warning("ignoring units of time dimension, not able to interpret")
} else {
tdim = make_cal_time2(dimensions,
time_name = tmeta$tname,
time_unit = tmeta$tunit,
cal = tmeta$calendar)
}
if (!is.null(tdim)) dimensions[[tmeta$tname]] <- tdim
}
}
}
}
return(dimensions)
}
.get_curvilinear_coords <- function(curvilinear, dimensions, nc, dims) {
curvi_coords <- lapply(curvilinear, function(.v) {
cv_matcher <- RNetCDF::var.inq.nc(nc, .v)$dimids
cv_matcher <- match(cv_matcher, dims$id[1:2])
RNetCDF::var.get.nc(nc,
variable = .v,
start = dims[1:2, "start", drop = TRUE][cv_matcher],
count = dims[1:2, "count", drop = TRUE][cv_matcher],
collapse = FALSE,
unpack = TRUE)
})
names(curvi_coords)[1:2] <- names(dimensions)[1:2]
expected_shape <- c(dimensions[[1]]$to, dimensions[[2]]$to)
if(!all(dim(curvi_coords[[1]]) == expected_shape)) {
curvi_coords[1] <- t(curvi_coords[1])
}
if(!all(dim(curvi_coords[2]) == expected_shape)) {
curvi_coords[2] <- t(curvi_coords[2])
}
return(curvi_coords)
}
make_cal_time2 <- function(x, time_name = NULL, time_unit = NULL, cal = NULL) {
if(inherits(x, "dimensions")) {
tm = st_get_dimension_values(x, time_name)
dimension <- x[[time_name]]
} else {
tm <- x$values
dimension <- x
}
if(! is.null(cal) && cal %in% c("360_day", "365_day", "noleap")) {
if (!requireNamespace("PCICt", quietly = TRUE)) {
stop("package PCICt required, please install it first") # nocov
}
t01 = set_units(0:1, time_unit, mode = "standard")
delta = if (grepl("months", time_unit)) {
if (cal == "360_day")
set_units(30 * 24 * 3600, "s", mode = "standard")
else
set_units((365/12) * 24 * 3600, "s", mode = "standard")
} else
set_units(as_units(diff(as.POSIXct(t01))), "s", mode = "standard")
origin = as.character(as.POSIXct(t01[1]))
v.pcict = PCICt::as.PCICt(tm * as.numeric(delta), cal, origin)
if (!is.null(dimension$values)) {
v = dimension$values
if (inherits(v, "intervals")) {
start = PCICt::as.PCICt(v$start * as.numeric(delta), cal, origin)
end = PCICt::as.PCICt(v$end * as.numeric(delta), cal, origin)
dimension$values = make_intervals(start, end)
} else
dimension$values = v.pcict
} else {
dimension$offset = v.pcict[1]
dimension$delta = diff(v.pcict[1:2])
}
dimension$refsys = "PCICt"
} else { # Gregorian/Julian, POSIXct:
if (!is.null(dimension$values)) {
v = dimension$values
if (inherits(v, "intervals")) {
start = as.POSIXct(units::set_units(v$start, time_unit, mode = "standard")) # or: RNetCDF::utcal.nc(u, tm, "c")
end = as.POSIXct(units::set_units(v$end, time_unit, mode = "standard")) # or: RNetCDF::utcal.nc(u, tm, "c")
dimension$values = make_intervals(start, end)
} else
dimension$values = as.POSIXct(units::set_units(tm, time_unit, mode = "standard")) # or: RNetCDF::utcal.nc(u, tm, "c")
} else {
t0 = dimension$offset
t1 = dimension$offset + dimension$delta
t.posix = as.POSIXct(units::set_units(c(t0, t1), time_unit, mode = "standard")) # or: utcal.nc(u, c(t0,t1), "c")
dimension$offset = t.posix[1]
dimension$delta = diff(t.posix)
}
dimension$refsys = "POSIXct"
}
dimension
}
.is_netcdf_cf_dsg <- function(meta) {
featuretype <- .get_attributes(meta$attribute, "featureType", "NC_GLOBAL")
if(!is.null(featuretype)) {
if(grepl( "timeseries", featuretype$value, ignore.case = TRUE)) {
return(TRUE)
}
}
return(FALSE)
}
.get_geom_name <- function(meta) {
geometry <- unlist(unique(.get_attributes(meta$attribute, "geometry")$value))
if(length(geometry) > 1) {
warning(paste("Only a single geometry is supported. Using", geometry[1])) #nocov
geometry <- geometry[1]
}
if(!is.null(geometry)) {
ncdfgeom::read_geometry(meta$source$source)
} else {
NA
}
}
#' @param sf_geometry sf data.frame with geometry and attributes to be added to stars object.
#' Must have same number of rows as timeseries instances.
#' @details For the \code{ncdfgeom} method: objects are point-timeseries with optional line or polygon geometry for each timeseries specified with the \code{sf_geometry} parameter. See \pkg{ncdfgeom} for more about this NetCDF-based format for geometry and timeseries.
#' @name st_as_stars
#' @export
#'
st_as_stars.ncdfgeom <- function(.x, ..., sf_geometry = NA) {
crs <- sf::st_crs('OGC:CRS84')
if(length(.x$alts) == 0) {
ts_points <- data.frame(X = .x$lons, Y = .x$lats)
ts_points <- sf::st_as_sf(ts_points, coords = c("X", "Y"), crs = crs)
} else {
ts_points <- data.frame(X = .x$lons, Y = .x$lats, Z = .x$alts)
ts_points <- sf::st_as_sf(ts_points, coords = c("X", "Y", "Z"), crs = crs)
}
data <- .x$data_frames[[1]]
gdim <- create_dimension(from = 1, to = length(.x$lats),
refsys = crs, point = TRUE,
values = ts_points$geometry)
tdim <- create_dimension(from = 1, to = length(.x$time),
refsys = "POSIXct", point = FALSE,
values = as.POSIXct(.x$time))
dim <- list(time = tdim, points = gdim)
if(inherits(sf_geometry, "sf")) {
if(length(gdim$values) != length(st_geometry(sf_geometry)))
stop("geometry must be same length as instance dimension of timeseries")
is_point <- any(grepl("point", class(st_geometry(sf_geometry)), ignore.case = TRUE))
sf_dim <- create_dimension(from = 1, to = length(gdim$values),
refsys = st_crs(sf_geometry),
point = is_point, is_raster = FALSE,