-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunsel.py
59 lines (51 loc) · 1.72 KB
/
runsel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import tensorflow as tf
from common import *
import datasets
from layers import *
if __name__ == '__main__':
sigma = 1
N = 4
K = 13
selval = 7
data = datasets.Seldata(K,selval)
test_data = data.test
print(data.next_data(3))
lr = 0.1
rw = 0.01
X = tf.placeholder(tf.float32, shape=[None,K])
y_ = tf.placeholder(tf.float32, shape=[None])
print(X)
kind = "gaussian"
#kind = "triangle"
y, W = SelectK(K,kind)(X)
print(y,y_,W)
loss = tf.nn.l2_loss(y-y_) + rw*binary_reg(W)
train_step = tf.train.GradientDescentOptimizer(lr).minimize(loss)
yscale = y > 0
y_scale = y_ > 0
correct_pred = tf.equal(yscale,y_scale)
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))
sample = 20
iters = 500
with tf.Session() as sess:
tf.global_variables_initializer().run()
wval = None
for i in range(iters):
tdata = data.next_data(32)
_,yval,lossval = sess.run([train_step,y,loss],feed_dict={X:tdata[0],y_:tdata[1]})
if (i%sample==0):
print(lossval, "("+str(i)+"/"+str(iters)+")")
print(" ",scaleto01(tdata[0][0]),"=",scaleto01(tdata[1][0]))
print(" lrn",yval[0])
print(" acc",accuracy.eval(feed_dict={X:test_data.inputs,y_:test_data.outputs}))
if (i%(sample*4)==39):
curWs = sess.run([W],feed_dict={X:test_data.inputs,y_:test_data.outputs})
print("CURWs", curWs)
yV,_yV = sess.run([yscale,y_scale],feed_dict={X:test_data.inputs,y_:test_data.outputs})
print("yV",yV)
print("_yv", _yV)
print("Accuracy!")
print(accuracy.eval(feed_dict={X:test_data.inputs,y_:test_data.outputs}))
curWs = sess.run([W],feed_dict={X:test_data.inputs,y_:test_data.outputs})
print("CURWs", curWs)