-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeploy.py
41 lines (33 loc) · 1.65 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from azureml.core import Workspace
from azureml.core.model import Model
from azureml.core.webservice import AciWebservice
from azureml.core.webservice import Webservice
from azureml.core.image import ContainerImage
from azureml.core.conda_dependencies import CondaDependencies
ws = Workspace.from_config()
myenv = CondaDependencies()
myenv.add_pip_package("tensorflow==1.12.0")
myenv.add_pip_package("keras==2.2.4")
myenv.add_pip_package("numpy")
with open("dlenv.yml", "w") as f:
f.write(myenv.serialize_to_string())
model = Model.register(model_path = "tf_mnist_model.h5",
model_name = "tf_mnist_model",
tags = {"key": "1"},
description = "MNIST Prediction",
workspace = ws)
aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,
memory_gb=1,
tags={"data": "MNIST", "method": "tf"},
description='Predict MNIST with tf')
# configure the image
image_config = ContainerImage.image_configuration(execution_script="score.py",
runtime="python",
conda_file="dlenv.yml")
service = Webservice.deploy_from_model(workspace=ws,
name='tf-mnist-svc',
deployment_config=aciconfig,
models=[model],
image_config=image_config)
service.wait_for_deployment(show_output=True)
print(service.scoring_uri)