a collection of visualization operation for easier usage
2021/09/29
- Add pip installation
- Build a cleaner repo
import numpy as np
from visualize_attention_map.visualize_attention_map_V2 import visulize_attention_ratio
img_path = 'test_data/test_image.jpg'
save_path = 'test_data/'
random_attention = np.random.randn(14, 14)
visulize_attention_ratio(img_path=img_path, save_path=save_path, attention_mask=random_attention, save_image=True,
save_original_image=True)
- img_path: where the image you want to put an attention mask on.
- save_path: where to save the image.
- attention_mask: the attention mask with format
numpy.ndarray
, its shape is (H, W) - save_image=True: save the image with attention map or not, default: True.
- save_original_image=True: save the original image, default: True
Just run this example to see the result: grid_attention_example.py
Or you can check Attention Map Visualization here for more details
from visualize_region_attention.region_attention_visualization import region_attention_visualization
import numpy as np
img_path = "test_data/test_image.jpg"
boxes = np.array([[14, 25, 100, 200], [56, 75, 245, 300]], dtype='int')
region_attention_visualization(img_path, boxes, box_attentions=[0.36, 0.64], attention_ratio=1.0)
- img_path: the path of the original image
- boxes: bounding box
- box_attentions: the attention score of each bounding box
- attention_ratio: a special param, if you set the attention_ratio larger, it will make the attention map look more shallow. Just try!
Just run this example to see the result: region_attention_example.py
Or you can check Region Attention Visualization here for more details