forked from lllyasviel/ControlNet
-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathhack.py
56 lines (39 loc) · 1.73 KB
/
hack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import einops
import ldm.modules.encoders.modules
from transformers import logging
def disable_verbosity():
logging.set_verbosity_error()
def hack_everything(clip_skip=0):
disable_verbosity()
ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
return
def _hacked_clip_forward(self, text):
PAD = self.tokenizer.pad_token_id
EOS = self.tokenizer.eos_token_id
BOS = self.tokenizer.bos_token_id
def tokenize(t):
return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
def transformer_encode(t):
if self.clip_skip > 1:
rt = self.transformer(input_ids=t, output_hidden_states=True)
return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
else:
return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
def split(x):
return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
def pad(x, p, i):
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
raw_tokens_list = tokenize(text)
tokens_list = []
for raw_tokens in raw_tokens_list:
raw_tokens_123 = split(raw_tokens)
raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
tokens_list.append(raw_tokens_123)
tokens_list = torch.IntTensor(tokens_list).to(self.device)
feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
y = transformer_encode(feed)
z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
return z