forked from chfenger/goNum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOptimizeSimplex.go
197 lines (188 loc) · 5.96 KB
/
OptimizeSimplex.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// OptimizeSimplex
/*
------------------------------------------------------
作者 : Black Ghost
日期 : 2018-12-25
版本 : 0.0.0
------------------------------------------------------
Nelder-Mead单纯形法求解多自变量函数极小值
理论:
对于函数z=f(x0,x1,...,xn),取三个相异的点构成三角形,并按函数值
从小到大排序为B、G、W,依下列方法进行操作:
0. 取BG中点M = (B+G)/2;
1. 取反射点R = M+(M-W);
2. 取延伸点E = R+(R-M);
3. 收缩点C = zMin(C1=M+(W-M)/2, C2=M+(M-W)/2);
4. 收缩点S = (B+W)/2。
1~4每一步计算函数值并置换排序BGW
n个x需要n+1个初始点
参考:John H. Mathews and Kurtis D. Fink. Numerical
methods using MATLAB, 4th ed. Pearson
Education, 2004. ss 8.2.1
------------------------------------------------------
输入 :
fun 函数表达式
x0 初始点,nx(n+1),第一行x0,第二行x1,...
tol 控制误差
Nn 最大迭代步数
输出 :
sol 解,(n+1)x1
|xPath 自变量变化历程,二维浮点,可使用Slices2ToMatrix函数转换为Matrix类型
|fxPath 函数值变化历程,一维浮点,可使用Slices1ToMatrix函数转换为Matrix类型
|errPath 误差绝对值历程,一维浮点,可使用Slices1ToMatrix函数转换为Matrix类型
err 解出标志:false-未解出或达到边界;
true-全部解出
------------------------------------------------------
*/
package goNum
import (
"math"
)
// OptimizeSimplex Nelder-Mead单纯形法求解多自变量函数极小值
func OptimizeSimplex(fun func(Matrix) float64, x0 Matrix, tol float64, Nn int) (Matrix, bool) {
/*
Nelder-Mead单纯形法求解多自变量函数极小值
输入 :
fun 函数表达式
x0 初始点,nx(n+1),第一行x0,第二行x1,...
tol 控制误差
Nn 最大迭代步数
输出 :
sol 解,(n+1)x1
err 解出标志:false-未解出或达到边界;
true-全部解出
*/
//判断x0大小
n := x0.Rows //xi
if x0.Columns != n+1 { //初始点个数等于自变量个数加一
panic("Error in goNum.OptimizeSimplex: Initial values error")
}
//判断N
if Nn < 1 {
panic("Error in goNum.OptimizeSimplex: Iteration number error")
}
sol := ZeroMatrix(n+1, 1)
xPath := make([][]float64, 0)
fxPath := make([]float64, 0)
errPath := make([]float64, 0)
var err bool = false
//计算f(x)
for i := 0; i < n+1; i++ {
sol.Data[i] = fun(NewMatrix(n, 1, x0.ColumnOfMatrix(i)))
}
//取最大、最小、次大和次小序号
_, l0, _ := Min(sol.Data) //最小
_, h0, _ := Max(sol.Data) //最大
l1 := h0 //次小
h1 := l0 //次大
for i := 0; i < n+1; i++ {
if (i != l0) && (i != h0) && (sol.Data[i] < sol.Data[l1]) {
l1 = i
}
if (i != l0) && (i != h0) && (sol.Data[i] > sol.Data[h1]) {
h1 = i
}
}
xPath = append(xPath, x0.ColumnOfMatrix(l0))
fxPath = append(fxPath, sol.Data[l0])
errPath = append(errPath, math.Abs(sol.Data[h0]-sol.Data[l0]))
//迭代
for i := 0; i < Nn; i++ {
//中点M = (Sum-W)/n
temp0 := ZeroMatrix(n, 1)
for j := 0; j < n+1; j++ {
temp0 = AddMatrix(temp0, NewMatrix(n, 1, x0.ColumnOfMatrix(j)))
}
mm := NumProductMatrix(SubMatrix(temp0, NewMatrix(n, 1, x0.ColumnOfMatrix(h0))), 1.0/float64(n))
//反射点R = 2M-W
rr := SubMatrix(NumProductMatrix(mm, 2.0), NewMatrix(n, 1, x0.ColumnOfMatrix(h0)))
fr := fun(rr)
//判断
if fr < sol.Data[h1] { //fr<fh1, case1
if fr > sol.Data[l1] { //R-->W
for j := 0; j < n; j++ {
x0.SetMatrix(j, h0, rr.Data[j])
}
sol.Data[h0] = fr
} else { //延伸E
ee := SubMatrix(NumProductMatrix(rr, 2.0), mm)
fe := fun(ee)
if fe < sol.Data[l1] { //E-->W
for j := 0; j < n; j++ {
x0.SetMatrix(j, h0, ee.Data[j])
}
sol.Data[h0] = fe
} else { //R-->W
for j := 0; j < n; j++ {
x0.SetMatrix(j, h0, rr.Data[j])
}
sol.Data[h0] = fr
}
}
} else { //case 2
if fr < sol.Data[h0] {
for j := 0; j < n; j++ {
x0.SetMatrix(j, h0, rr.Data[j])
}
sol.Data[h0] = fr
}
//C1 = (W+M)/2, C2 = (R+M)/2,默认C=C1
cc := NumProductMatrix(AddMatrix(NewMatrix(n, 1, x0.ColumnOfMatrix(h0)), mm), 0.5)
fc := fun(cc)
c2 := NumProductMatrix(AddMatrix(rr, mm), 0.5)
fc2 := fun(c2)
//判断获得C
if fc > fc2 {
for j := 0; j < n; j++ {
cc.Data[j] = c2.Data[j]
}
fc = fc2
}
if fc < sol.Data[h0] {
for j := 0; j < n; j++ {
x0.SetMatrix(j, h0, cc.Data[j])
}
sol.Data[h0] = fc
} else { //xj = (xj+x0)/2
for j := 0; j < n+1; j++ {
if j != l0 {
temp1 := NumProductMatrix(AddMatrix(NewMatrix(n, 1, x0.ColumnOfMatrix(j)),
NewMatrix(n, 1, x0.ColumnOfMatrix(l0))), 0.5)
for k := 0; k < n; k++ {
x0.SetMatrix(k, j, temp1.Data[k])
}
sol.Data[j] = fun(temp1)
}
}
}
}
//下一步
_, l0, _ = Min(sol.Data) //最小
_, h0, _ = Max(sol.Data) //最大
l1 = h0 //次小
h1 = l0 //次大
for j := 0; j < n+1; j++ {
if (j != l0) && (j != h0) && (sol.Data[j] < sol.Data[l1]) {
l1 = j
}
if (j != l0) && (j != h0) && (sol.Data[j] > sol.Data[h1]) {
h1 = j
}
}
//记录历程
xPath = append(xPath, x0.ColumnOfMatrix(l0))
fxPath = append(fxPath, sol.Data[l0])
errPath = append(errPath, math.Abs(sol.Data[h0]-sol.Data[l0]))
//判断满足精度否
if errPath[i+1] < tol {
//将所有数据赋予sol,前n项为x,最后一项为f(x)
sol.Data[n] = sol.Data[l0]
for j := 0; j < n; j++ {
sol.Data[j] = x0.GetFromMatrix(j, l0)
}
err = true
return sol, err
}
}
return sol, err //,xPath,fxPath,errPath
}