forked from robertmartin8/MachineLearningStocks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parsing_keystats.py
227 lines (196 loc) · 8.43 KB
/
parsing_keystats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import pandas as pd
import os
import time
import re
from datetime import datetime
from utils import data_string_to_float
from tqdm import tqdm
# The directory where individual html files are stored
statspath = "intraQuarter/_KeyStats/"
# The list of features to parse from the html files
features = [ # Valuation measures
"Market Cap",
"Enterprise Value",
"Trailing P/E",
"Forward P/E",
"PEG Ratio",
"Price/Sales",
"Price/Book",
"Enterprise Value/Revenue",
"Enterprise Value/EBITDA",
# Financial highlights
"Profit Margin",
"Operating Margin",
"Return on Assets",
"Return on Equity",
"Revenue",
"Revenue Per Share",
"Qtrly Revenue Growth",
"Gross Profit",
"EBITDA",
"Net Income Avl to Common",
"Diluted EPS",
"Qtrly Earnings Growth",
"Total Cash",
"Total Cash Per Share",
"Total Debt",
"Total Debt/Equity",
"Current Ratio",
"Book Value Per Share",
"Operating Cash Flow",
"Levered Free Cash Flow",
# Trading information
"Beta",
"50-Day Moving Average",
"200-Day Moving Average",
"Avg Vol (3 month)",
"Shares Outstanding",
"Float",
"% Held by Insiders",
"% Held by Institutions",
"Shares Short (as of",
"Short Ratio",
"Short % of Float",
"Shares Short (prior month",
]
def preprocess_price_data():
"""
Currently, the sp500 and stock price datasets we downloaded do not have any data for
days when the market was closed (weekends and public holidays). We need to amend this so that
all rows are included. Doing this now saves a lot of effort when we actually create the
keystats dataset, which requires that we have stock data every day.
:return: SP500 and stock dataframes, with no missing rows.
"""
# Read in SP500 data and stock data, parsing the dates.
sp500_raw_data = pd.read_csv("sp500_index.csv", index_col="Date", parse_dates=True)
stock_raw_data = pd.read_csv("stock_prices.csv", index_col="Date", parse_dates=True)
# We will reindex to include the weekends.
start_date = str(stock_raw_data.index[0])
end_date = str(stock_raw_data.index[-1])
idx = pd.date_range(start_date, end_date)
sp500_raw_data = sp500_raw_data.reindex(idx)
stock_raw_data = stock_raw_data.reindex(idx)
# Now the weekends are NaN, so we fill forward these NaNs
# (i.e weekends take the value of Friday's adjusted close).
sp500_raw_data.ffill(inplace=True)
stock_raw_data.ffill(inplace=True)
return sp500_raw_data, stock_raw_data
def parse_keystats(sp500_df, stock_df):
"""
We have downloaded a large number of html files, which are snapshots of a ticker at different times,
containing the fundamental data (our features). To extract the key statistics, we use regex.
For supervised machine learning, we also need the data that will form our dependent variable,
the performance of the stock compared to the SP500.
:sp500_df: dataframe containing SP500 prices
:stock_df: dataframe containing stock prices
:return: a dataframe of training data (i.e features and the components of our dependent variable)
"""
# The tickers whose data is to be parsed.
stock_list = [x[0] for x in os.walk(statspath)]
stock_list = stock_list[1:]
# Creating a new dataframe which we will later fill.
df_columns = [
"Date",
"Unix",
"Ticker",
"Price",
"stock_p_change",
"SP500",
"SP500_p_change",
] + features
df = pd.DataFrame(columns=df_columns)
# tqdm is a simple progress bar
for stock_directory in tqdm(stock_list, desc="Parsing progress:", unit="tickers"):
keystats_html_files = os.listdir(stock_directory)
# Snippet to get rid of the .DS_Store file in macOS
if ".DS_Store" in keystats_html_files:
keystats_html_files.remove(".DS_Store")
ticker = stock_directory.split(statspath)[1]
for file in keystats_html_files:
# Convert the datetime format of our file to unix time
date_stamp = datetime.strptime(file, "%Y%m%d%H%M%S.html")
unix_time = time.mktime(date_stamp.timetuple())
# Read in the html file as a string.
full_file_path = stock_directory + "/" + file
# This will store the parsed values
value_list = []
with open(full_file_path, "r") as source:
source = source.read()
# Remove commas from the html to make parsing easier.
source = source.replace(",", "")
# Regex search for the different variables in the html file, then append to value_list
for variable in features:
# Search for the table entry adjacent to the variable name.
try:
regex = (
r">"
+ re.escape(variable)
+ r".*?(\-?\d+\.*\d*K?M?B?|N/A[\\n|\s]*|>0|NaN)%?"
r"(</td>|</span>)"
)
value = re.search(regex, source, flags=re.DOTALL).group(1)
# Dealing with number formatting
value_list.append(data_string_to_float(value))
# The data may not be present. Process accordingly
except AttributeError:
# In the past, 'Avg Vol' was instead named 'Average Volume'
# If 'Avg Vol' fails, search for 'Average Volume'.
if variable == "Avg Vol (3 month)":
try:
new_variable = ">Average Volume (3 month)"
regex = (
re.escape(new_variable)
+ r".*?(\-?\d+\.*\d*K?M?B?|N/A[\\n|\s]*|>0)%?"
r"(</td>|</span>)"
)
value = re.search(regex, source, flags=re.DOTALL).group(
1
)
value_list.append(data_string_to_float(value))
except AttributeError:
value_list.append("N/A")
else:
value_list.append("N/A")
# We need the stock price and SP500 price now and one year from now.
# Convert from unix time to YYYY-MM-DD, so we can look for the price in the dataframe
# then calculate the percentage change.
current_date = datetime.fromtimestamp(unix_time).strftime("%Y-%m-%d")
one_year_later = datetime.fromtimestamp(unix_time + 31536000).strftime(
"%Y-%m-%d"
)
# SP500 prices now and one year later, and the percentage change
sp500_price = float(sp500_df.loc[current_date, "Adj Close"])
sp500_1y_price = float(sp500_df.loc[one_year_later, "Adj Close"])
sp500_p_change = round(
((sp500_1y_price - sp500_price) / sp500_price * 100), 2
)
# Stock prices now and one year later. We need a try/except because some data is missing
stock_price, stock_1y_price = "N/A", "N/A"
try:
stock_price = float(stock_df.loc[current_date, ticker.upper()])
stock_1y_price = float(stock_df.loc[one_year_later, ticker.upper()])
except KeyError:
# If stock data is missing, we must skip this datapoint
# print(f"PRICE RETRIEVAL ERROR for {ticker}")
continue
stock_p_change = round(
((stock_1y_price - stock_price) / stock_price * 100), 2
)
# Append all our data to the dataframe.
new_df_row = [
date_stamp,
unix_time,
ticker,
stock_price,
stock_p_change,
sp500_price,
sp500_p_change,
] + value_list
df = df.append(dict(zip(df_columns, new_df_row)), ignore_index=True)
# Remove rows with missing stock price data
df.dropna(axis=0, subset=["Price", "stock_p_change"], inplace=True)
# Output the CSV
df.to_csv("keystats.csv", index=False)
if __name__ == "__main__":
sp500_df, stock_df = preprocess_price_data()
parse_keystats(sp500_df, stock_df)