-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtest.py
323 lines (242 loc) · 13.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from numpy.testing import assert_almost_equal
import pandas as pd
import numpy as np
import rqrisk
from rqrisk import DAILY, WEEKLY, MONTHLY, NATURAL_DAILY
# Simple benchmark, no drawdown
simple_benchmark = pd.Series(
np.array([1., 1., 1., 1., 1., 1., 1., 1., 1.]) / 100,
index=pd.date_range('2000-1-30', periods=9, freq='D'))
zero_benchmark = pd.Series(
np.array([0]*9),
index=pd.date_range('2000-1-30', periods=9, freq='D'))
simple_weekly_benchamrk = pd.Series(
np.array([1., 1., 1., 1., 1., 1., 1., 1., 1.]) / 100,
index=pd.date_range('2000-1-30', periods=9, freq='W'))
simple_monthly_benchamrk = pd.Series(
np.array([1., 1., 1., 1., 1., 1., 1., 1., 1.]) / 100,
index=pd.date_range('2000-1-30', periods=9, freq='M'))
# All positive returns, small variance
positive_returns = pd.Series(
np.array([1., 2., 1., 1., 1., 1., 1., 1., 1.]) / 100,
index=pd.date_range('2000-1-30', periods=9, freq='D'))
# All negative returns
negative_returns = pd.Series(
np.array([0., -6., -7., -1., -9., -2., -6., -8., -5.]) / 100,
index=pd.date_range('2000-1-30', periods=9, freq='D'))
# Weekly returns
weekly_returns = pd.Series(
np.array([0., 1., 10., -4., 2., 3., 2., 1., -10.])/100,
index=pd.date_range('2000-1-30', periods=9, freq='W'))
# Monthly returns
monthly_returns = pd.Series(
np.array([0., 1., 10., -4., 2., 3., 2., 1., -10.])/100,
index=pd.date_range('2000-1-30', periods=9, freq='M'))
# Series of length 1
one_return = pd.Series(
np.array([1.])/100,
index=pd.date_range('2000-1-30', periods=1, freq='D'))
one_benchmark = pd.Series(
np.array([1.])/100,
index=pd.date_range('2000-1-30', periods=1, freq='D'))
dot_one_benchmark = np.array([1.])/10
volatile_returns = pd.Series(
np.array([-3, 1, 4, 5, -10, -1, 2, 0.5, 1]) / 100,
index=pd.date_range('2000-1-30', periods=9, freq='D')
)
volatile_benchmark = pd.Series(
np.array([1, 2, -5, 3, 10, -3, -1, 4, 1]) / 100,
index=pd.date_range('2000-1-30', periods=9, freq='D')
)
volatile_weekly_benchmark = pd.Series(
np.array([1, 2, -5, 3, 10, -3, -1, 4, 1]) / 100,
index=pd.date_range('2000-1-30', periods=9, freq='W')
)
volatile_monthly_benchmark = pd.Series(
np.array([1, 2, -5, 3, 10, -3, -1, 4, 1]) / 100,
index=pd.date_range('2000-1-30', periods=9, freq='M')
)
def _r(returns, benchmark_returns, risk_free_rate, period=DAILY):
if benchmark_returns is None:
benchmark_returns = pd.Series([np.nan] * len(returns), index=returns.index, dtype=returns.dtype)
return rqrisk.Risk(returns, benchmark_returns, risk_free_rate, period)
def test_return():
assert_almost_equal(
rqrisk.Risk(positive_returns, simple_benchmark, 0).max_drawdown,
-0.0)
assert_almost_equal(
rqrisk.Risk(negative_returns, simple_benchmark, 0).max_drawdown,
0.36590730349873601)
assert_almost_equal(
rqrisk.Risk(one_return, one_benchmark, 0).max_drawdown,
0)
def test_annual_return():
def _assert(returns, period, desired_annual_return):
assert_almost_equal(_r(returns, None, 0, period).annual_return, desired_annual_return)
_assert(weekly_returns, WEEKLY, 0.24690830513998208)
_assert(monthly_returns, MONTHLY, 0.052242061386048144)
_assert(pd.Series([], dtype=float), DAILY, np.nan)
def test_beta_alpha():
def _assert(returns, benchmark, risk_free_rate, period, desired_beta, desired_alpha):
r = _r(returns, benchmark, risk_free_rate, period)
assert_almost_equal(r.beta, desired_beta)
assert_almost_equal(r.alpha, desired_alpha)
_assert(one_return, one_benchmark, 0, DAILY, np.nan, np.nan)
_assert(positive_returns, volatile_benchmark, 0.0252, DAILY, 0.004444444444444445, 15.050183341344455)
_assert(volatile_returns, volatile_benchmark, 0.0252, DAILY, -0.6755555555555558, 14.515193843282699)
_assert(volatile_returns, volatile_benchmark, 0.052, WEEKLY, -0.6755555555555558, 0.4543018988394533)
_assert(volatile_returns, volatile_benchmark, 0.024, MONTHLY, -0.6755555555555558, 0.05117674068461497)
def test_calmar():
assert_almost_equal(
rqrisk.Risk(one_return, one_benchmark, 0).calmar,
np.inf)
assert_almost_equal(
rqrisk.Risk(weekly_returns, simple_weekly_benchamrk, 0, rqrisk.WEEKLY).calmar,
2.4690830513998208)
assert_almost_equal(
rqrisk.Risk(monthly_returns, simple_monthly_benchamrk, 0, rqrisk.MONTHLY).calmar,
0.52242061386048144)
def test_annual_volatity():
assert_almost_equal(
rqrisk.Risk(simple_benchmark, simple_benchmark, 0).annual_volatility,
0)
assert_almost_equal(
rqrisk.Risk(weekly_returns, simple_weekly_benchamrk, 0, rqrisk.WEEKLY).annual_volatility,
0.38851569394870583)
assert_almost_equal(
rqrisk.Risk(monthly_returns, simple_monthly_benchamrk, 0, rqrisk.MONTHLY).annual_volatility,
0.18663690238892558)
def test_volatility():
def _assert(returns, period, desired_v, desired_annual_v):
r = _r(returns, None, 0, period)
assert_almost_equal(r.volatility, desired_v)
assert_almost_equal(r.annual_volatility, desired_annual_v),
_assert(one_return, DAILY, 0, 0)
_assert(positive_returns, DAILY, 0.0033333333333333335, 0.052915026221291815)
_assert(negative_returns, DAILY, 0.03179797338056485, 0.5047771785649584)
_assert(volatile_returns, DAILY, 0.04433145359423463, 0.7037400088100719)
def test_excess_volatility():
def _assert(returns, benchmark, period, desired_excess_v, desired_excess_annual_v):
r = _r(returns, benchmark, 0, period)
assert_almost_equal(r.excess_volatility, desired_excess_v)
assert_almost_equal(r.excess_annual_volatility, desired_excess_annual_v)
_assert(one_return, one_benchmark, DAILY, 0, 0)
_assert(positive_returns, zero_benchmark, DAILY, 0.0033333333333333335, 0.052915026221291815)
_assert(negative_returns, zero_benchmark, DAILY, 0.03179797338056485, 0.5047771785649584)
_assert(volatile_returns, volatile_benchmark, DAILY, 0.07983489907998326, 1.2673397334574499)
def test_sharpe():
def _assert(returns, risk_free_rate, period, desired_sharpe):
assert_almost_equal(_r(returns, None, risk_free_rate, period).sharpe, desired_sharpe)
_assert(one_return, 0, DAILY, np.nan)
_assert(positive_returns, 0, DAILY, 52.915026221291804)
_assert(negative_returns, 0, DAILY, -24.406808633910085)
_assert(volatile_returns, 0.0252, DAILY, -0.2343037804431006)
_assert(weekly_returns, 0.052, WEEKLY, 0.613028149736571)
_assert(monthly_returns, 0.036, MONTHLY, 0.16742323233212023)
def test_downside_risk():
def _assert(returns, risk_free_rate, period, desired_downside_risk, desired_annual_downside_risk):
r = _r(returns, None, risk_free_rate, period)
assert_almost_equal(r.downside_risk, desired_downside_risk)
assert_almost_equal(r.annual_downside_risk, desired_annual_downside_risk)
_assert(one_return, 0, DAILY, 0., 0.)
_assert(weekly_returns, 0, WEEKLY, 0.04069420743199846, 0.2934501030208764)
_assert(weekly_returns, 0.052, WEEKLY, 0.04069420743199846, 0.2934501030208764)
_assert(monthly_returns, 0, MONTHLY, 0.04069420743199846, 0.14096886969193667)
_assert(monthly_returns, 0.036, MONTHLY, 0.04069420743199846, 0.14096886969193667)
def test_sortino():
def _assert(returns, risk_free_rate, period, desired_sortino):
assert_almost_equal(_r(returns, None, risk_free_rate, period).sortino, desired_sortino)
_assert(one_return, 0, DAILY, np.nan)
_assert(positive_returns, 0, DAILY, 158.74507866387563)
_assert(negative_returns, 0.0252, DAILY, -37.99176785990703)
_assert(weekly_returns, 0, WEEKLY, 0.9844565938637175)
_assert(weekly_returns, 0.052, WEEKLY, 0.8116236953171263)
_assert(monthly_returns, 0, MONTHLY, 0.47291765062992475)
_assert(monthly_returns, 0.036, MONTHLY, 0.22166137487442497)
def test_tracking_error_information_ratio():
def _assert(returns, benchmark, period, desired_te, desired_annual_te, desired_excess_sharpe):
r = _r(returns, pd.Series(benchmark.values, index=returns.index), 0, period)
assert_almost_equal(r.tracking_error, desired_te)
assert_almost_equal(r.annual_tracking_error, desired_annual_te)
assert_almost_equal(r.excess_sharpe, desired_excess_sharpe)
_assert(positive_returns, zero_benchmark, DAILY, 0.0033333333333333335, 0.052915026221291815, 52.915026221291804)
_assert(positive_returns, simple_benchmark, DAILY, 0.003333333333333333, 0.05291502622129181, 5.291502622129182)
_assert(negative_returns, simple_benchmark, DAILY, 0.03179797338056485, 0.5047771785649584, -29.399110399937154)
_assert(weekly_returns, simple_benchmark, WEEKLY, 0.05387743291748205, 0.38851569394870583, -0.5948565648975399)
def test_information_ratio():
def _assert(returns, benchmark, period, desired_ir):
r = _r(returns, pd.Series(benchmark.values, index=returns.index), 0, period)
assert_almost_equal(r.information_ratio, desired_ir)
_assert(positive_returns, zero_benchmark, DAILY, np.nan)
_assert(positive_returns, volatile_benchmark, DAILY, 285.37186618887614)
_assert(volatile_returns, volatile_benchmark, DAILY, 27.529981978194222)
_assert(weekly_returns, volatile_weekly_benchmark, WEEKLY, 1.7335510771535123)
def test_max_drawdown():
def _assert(returns, benchmark, desired_max_dd, desired_excess_max_dd):
r = _r(returns, benchmark, 0, DAILY)
assert_almost_equal(r.max_drawdown, desired_max_dd)
assert_almost_equal(r.excess_max_drawdown, desired_excess_max_dd)
_assert(volatile_returns, zero_benchmark, 0.10899999999999994, 0.10899999999999994)
_assert(volatile_returns, volatile_benchmark, 0.10899999999999994, 0.20000000000000007)
def test_natural_daily():
""" 测试自然日 """
r = _r(volatile_returns, volatile_benchmark, 0, NATURAL_DAILY)
assert_almost_equal(r.annual_return, -0.41377394067925255)
assert_almost_equal(r.benchmark_annual_return, 92.86171734511149)
assert_almost_equal(r.alpha, 62.31947511024051)
assert_almost_equal(r.information_ratio, 97.92626812366308)
assert_almost_equal(r.sharpe, -0.23942084288518412)
def test_win_rate():
""" 测试胜率 """
def _assert(returns, benchmark, desired_win_rate):
assert_almost_equal(_r(returns, benchmark, 0).win_rate, desired_win_rate)
_assert(volatile_returns, volatile_benchmark, 0.6666666666666666)
_assert(positive_returns, volatile_benchmark, 1)
_assert(negative_returns, volatile_benchmark, 0)
def test_excess_win_rate():
""" 测试超额胜率 """
def _assert(returns, benchmark, desired_win_rate):
assert_almost_equal(_r(returns, benchmark, 0).excess_win_rate, desired_win_rate)
_assert(volatile_returns, volatile_benchmark, 0.4444444444444444)
_assert(positive_returns, zero_benchmark, 1)
_assert(negative_returns, zero_benchmark, 0)
def test_correlation():
""" 测试相关系数 """
def _assert(returns, benchmark, period):
r = _r(returns, benchmark, 0, period)
assert_almost_equal(r.correlation, returns.corr(benchmark))
_assert(one_return, one_benchmark, DAILY) # np.nan
_assert(positive_returns, simple_benchmark, DAILY) # np.nan
_assert(positive_returns, volatile_benchmark, DAILY) # 0.05773502691896258
_assert(negative_returns, simple_benchmark, DAILY) # np.nan
_assert(negative_returns, volatile_benchmark, DAILY) # -0.32984900530449723
_assert(weekly_returns, simple_weekly_benchamrk, WEEKLY) # np.nan
_assert(weekly_returns, volatile_weekly_benchmark, WEEKLY) # -0.3411258215912419
_assert(monthly_returns, simple_monthly_benchamrk, MONTHLY) # np.nan
_assert(monthly_returns, volatile_monthly_benchmark, MONTHLY) # -0.3411258215912419
def test_ulcer_index():
""" 测试累计回撤深度 """
def _assert(returns, benchmark, ulcer_index):
r = _r(returns, benchmark, 0)
assert_almost_equal(r.ulcer_index, ulcer_index)
_assert(positive_returns, simple_benchmark, 0)
_assert(negative_returns, simple_benchmark, 21.319872051737)
_assert(weekly_returns, simple_weekly_benchamrk, 3.4688095940826726)
def test_ulcer_performance_index():
""" 测试累计回撤夏普率 """
def _assert(returns, benchmark, ulcer_performance_index):
r = _r(returns, benchmark, 0)
assert_almost_equal(r.ulcer_performance_index, ulcer_performance_index)
_assert(positive_returns, simple_benchmark, np.nan)
_assert(negative_returns, simple_benchmark, -0.017162734495347234)
_assert(weekly_returns, simple_weekly_benchamrk, 0.011223184970109419)
def test_excess_index():
def _assert(returns, benchmark, arithmetic_excess_return, geometric_excess_return, geometric_excess_annual_return):
r = _r(returns, benchmark, 0)
assert_almost_equal(r.arithmetic_excess_return, arithmetic_excess_return)
assert_almost_equal(r.geometric_excess_return, geometric_excess_return)
assert_almost_equal(r.geometric_excess_annual_return, geometric_excess_annual_return)
_assert(one_return, one_benchmark, 0, 0, 0)
_assert(simple_benchmark, zero_benchmark, 0.0936852726843609, 0.09368527268436089, 11.274002099240212)