-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathimagenet_ddp_apex.py
570 lines (473 loc) · 22.3 KB
/
imagenet_ddp_apex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import argparse
import os
import shutil
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from torch.utils.tensorboard import SummaryWriter
import apex
from apex.parallel import DistributedDataParallel as DDP
from apex.fp16_utils import *
from apex import amp, optimizers
def fast_collate(batch, memory_format):
imgs = [img[0] for img in batch]
targets = torch.tensor([target[1] for target in batch], dtype=torch.int64)
w = imgs[0].size[0]
h = imgs[0].size[1]
tensor = torch.zeros( (len(imgs), 3, h, w), dtype=torch.uint8).contiguous(memory_format=memory_format)
for i, img in enumerate(imgs):
nump_array = np.asarray(img, dtype=np.uint8)
if nump_array.ndim < 3:
nump_array = np.expand_dims(nump_array, axis=-1)
nump_array = np.rollaxis(nump_array, 2)
tensor[i] += torch.from_numpy(nump_array)
return tensor, targets
def parse():
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)'
'these are different from the processes that '
'run the programe. they are just for data loading')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=224, type=int,
metavar='N',
help='mini-batch size per GPU (default: 224)'
'has to be a multiple of 8 to make use of Tensor'
'Cores. for a GPU < 16 GB, max batch size is 224')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR',
help='Initial learning rate. Will be scaled by '
'<global batch size>/256: args.lr = args.lr*'
'float(args.batch_size*args.world_size)/256.'
'A warmup schedule will also be applied over '
'the first 5 epochs.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--local_rank', default=0, type=int)
parser.add_argument('--sync-bn', action='store_true',
help='enabling apex sync BN.')
parser.add_argument('--opt-level', type=str)
parser.add_argument('--keep-batchnorm-fp32', type=str, default=None)
parser.add_argument('--loss-scale', type=str, default=None)
parser.add_argument('--channels-last', type=bool, default=False)
args = parser.parse_args()
return args
def main():
global best_prec1, args
args = parse()
print("opt_level = {}".format(args.opt_level))
print("keep_batchnorm_fp32 = {}".format(args.keep_batchnorm_fp32), type(args.keep_batchnorm_fp32))
print("loss_scale = {}".format(args.loss_scale), type(args.loss_scale))
print("\nCUDNN VERSION: {}\n".format(torch.backends.cudnn.version()))
cudnn.benchmark = True
best_prec1 = 0
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
args.gpu = 0
args.world_size = 1
if args.distributed:
# this will be 0-3 if you have 4 GPUs on curr node
args.gpu = args.local_rank
torch.cuda.set_device(args.gpu)
torch.distributed.init_process_group(backend='nccl',
init_method='env://')
# this is the total # of GPUs across all nodes
# if using 2 nodes with 4 GPUs each, world size is 8
args.world_size = torch.distributed.get_world_size()
print("### global rank of curr node: {}".format(torch.distributed.get_rank()))
assert torch.backends.cudnn.enabled, "Amp requires cudnn backend to be enabled."
if args.channels_last:
memory_format = torch.channels_last
else:
memory_format = torch.contiguous_format
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
if args.sync_bn:
print("using apex synced BN")
model = apex.parallel.convert_syncbn_model(model)
model = model.cuda()
# initialize tb logging, you don't want to "double log"
# so only allow GPU0 to launch tb
if torch.distributed.get_rank() == 0:
writer = SummaryWriter(comment="_{}_gpux{}_b{}_cpu{}_opt{}".format(args.arch,
args.world_size,
args.batch_size,
args.workers,
args.opt_level))
# Scale init learning rate based on global batch size
args.lr = args.lr * float(args.batch_size*args.world_size)/256.
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# Initialize Amp. Amp accepts either values or strings for the optional override arguments,
# for convenient interoperation with argparse.
model, optimizer = amp.initialize(model, optimizer,
opt_level=args.opt_level,
keep_batchnorm_fp32=args.keep_batchnorm_fp32,
loss_scale=args.loss_scale)
# For distributed training, wrap the model with apex.parallel.DistributedDataParallel.
# This must be done AFTER the call to amp.initialize. If model = DDP(model) is called
# before model, ... = amp.initialize(model, ...), the call to amp.initialize may alter
# the types of model's parameters in a way that disrupts or destroys DDP's allreduce hooks.
if args.distributed:
# By default, apex.parallel.DistributedDataParallel overlaps communication with
# computation in the backward pass.
# model = DDP(model)
# delay_allreduce delays all communication to the end of the backward pass.
model = DDP(model, delay_allreduce=True)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
# Optionally resume from a checkpoint
if args.resume:
# Use a local scope to avoid dangling references
def resume():
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
resume()
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
if args.arch == "inception_v3":
raise RuntimeError("Currently, inception_v3 is not supported by this example.")
else:
crop_size = 224
val_size = 256
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(crop_size),
transforms.RandomHorizontalFlip(),
# transforms.ToTensor(), Too slow
# normalize,
]))
val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(val_size),
transforms.CenterCrop(crop_size),
]))
# makes sure that each process gets a different slice of the training data
# during distributed training
train_sampler = None
val_sampler = None
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
collate_fn = lambda b: fast_collate(b, memory_format)
# notice we turn off shuffling and use distributed data sampler
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=collate_fn)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True,
sampler=val_sampler,
collate_fn=collate_fn)
if args.evaluate:
validate(val_loader, model, criterion)
return
if torch.distributed.get_rank() == 0:
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
# train for one epoch
train_throughput, train_batch_time, train_losses, train_top1, train_top5, train_lr = train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
val_throughput, val_batch_time, val_losses, val_top1, val_top5 = validate(val_loader, model, criterion)
# remember best prec@1 and save checkpoint
# only allow GPU0 to print training states to prevent double logging
if torch.distributed.get_rank() == 0:
is_best = val_top1 > best_prec1
best_prec1 = max(val_top1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best, writer.log_dir)
# log train and val states to tensorboard
writer.add_scalar('Throughput/train', train_throughput, epoch + 1)
writer.add_scalar('Throughput/val', val_throughput, epoch + 1)
writer.add_scalar('Time/train', train_batch_time, epoch + 1)
writer.add_scalar('Time/val', val_batch_time, epoch + 1)
writer.add_scalar('Loss/train', train_losses, epoch + 1)
writer.add_scalar('Loss/val', val_losses, epoch + 1)
writer.add_scalar('Top1/train', train_top1, epoch + 1)
writer.add_scalar('Top1/val', val_top1, epoch + 1)
writer.add_scalar('Top5/train', train_top5, epoch + 1)
writer.add_scalar('Top5/val', val_top5, epoch + 1)
writer.add_scalar('Lr', train_lr, epoch + 1)
if torch.distributed.get_rank() == 0:
writer.close()
time_elapse = time.time() - start_time
mins, secs = divmod(time_elapse, 60)
hrs, mins = divmod(mins, 60)
print('### Training Time: {:.2f} hrs {:.2f} mins {:.2f} secs | {:.2f} secs'.format(hrs, mins, secs,
time_elapse))
print('### All Arguments:')
print(args)
return
class DataPrefetcher():
"""
With Amp, it isn't necessary to manually convert data to half.
"""
def __init__(self, loader):
self.loader = iter(loader)
self.stream = torch.cuda.Stream()
self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)
self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)
self.preload()
def preload(self):
try:
self.next_input, self.next_target = next(self.loader)
except StopIteration:
self.next_input = None
self.next_target = None
return
# if record_stream() doesn't work, another option is to make sure device inputs are created
# on the main stream.
# self.next_input_gpu = torch.empty_like(self.next_input, device='cuda')
# self.next_target_gpu = torch.empty_like(self.next_target, device='cuda')
# Need to make sure the memory allocated for next_* is not still in use by the main stream
# at the time we start copying to next_*:
# self.stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(self.stream):
self.next_input = self.next_input.cuda(non_blocking=True)
self.next_target = self.next_target.cuda(non_blocking=True)
# more code for the alternative if record_stream() doesn't work:
# copy_ will record the use of the pinned source tensor in this side stream.
# self.next_input_gpu.copy_(self.next_input, non_blocking=True)
# self.next_target_gpu.copy_(self.next_target, non_blocking=True)
# self.next_input = self.next_input_gpu
# self.next_target = self.next_target_gpu
self.next_input = self.next_input.float()
self.next_input = self.next_input.sub_(self.mean).div_(self.std)
def next(self):
torch.cuda.current_stream().wait_stream(self.stream)
input = self.next_input
target = self.next_target
if input is not None:
input.record_stream(torch.cuda.current_stream())
if target is not None:
target.record_stream(torch.cuda.current_stream())
self.preload()
return input, target
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
prefetcher = DataPrefetcher(train_loader)
input, target = prefetcher.next()
i = 0
while input is not None:
i += 1
curr_lr = adjust_learning_rate(optimizer, epoch, i, len(train_loader))
# compute output
output = model(input)
loss = criterion(output, target)
# compute gradient and do SGD step
optimizer.zero_grad()
# Mixed-precision training requires that the loss is scaled in order
# to prevent the gradients from underflow
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
if i % args.print_freq == 0:
# Every print_freq iterations, check the loss, accuracy, and speed.
# For best performance, it doesn't make sense to print these metrics every
# iteration, since they incur an allreduce and some host<->device syncs.
# Measure accuracy
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
# Average across all global processes for logging
if args.distributed:
reduced_loss = reduce_tensor(loss.data)
prec1 = reduce_tensor(prec1)
prec5 = reduce_tensor(prec5)
else:
reduced_loss = loss.data
# to_python_float incurs a host<->device sync
losses.update(to_python_float(reduced_loss), input.size(0))
top1.update(to_python_float(prec1), input.size(0))
top5.update(to_python_float(prec5), input.size(0))
torch.cuda.synchronize()
batch_time.update((time.time() - end) / args.print_freq)
end = time.time()
if args.local_rank == 0:
curr_throughput = args.world_size*args.batch_size/batch_time.val
avg_throughput = args.world_size*args.batch_size/batch_time.avg
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Throughput {3:.3f} ({4:.3f})\t'
'Loss {loss.val:.10f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader),
curr_throughput, avg_throughput,
batch_time=batch_time,
loss=losses,
top1=top1,
top5=top5))
input, target = prefetcher.next()
# return training states for the curr epoch
avg_throughput = args.world_size * args.batch_size / batch_time.avg
return avg_throughput, batch_time.avg, losses.avg, top1.avg, top5.avg, curr_lr
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
prefetcher = DataPrefetcher(val_loader)
input, target = prefetcher.next()
i = 0
while input is not None:
i += 1
# compute output
with torch.no_grad():
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
if args.distributed:
reduced_loss = reduce_tensor(loss.data)
prec1 = reduce_tensor(prec1)
prec5 = reduce_tensor(prec5)
else:
reduced_loss = loss.data
losses.update(to_python_float(reduced_loss), input.size(0))
top1.update(to_python_float(prec1), input.size(0))
top5.update(to_python_float(prec5), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# TODO: Change timings to mirror train().
if args.local_rank == 0 and i % args.print_freq == 0:
curr_throughput = args.world_size * args.batch_size / batch_time.val
avg_throughput = args.world_size * args.batch_size / batch_time.avg
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Speed {2:.3f} ({3:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader),
curr_throughput,
avg_throughput,
batch_time=batch_time,
loss=losses,
top1=top1,
top5=top5))
input, target = prefetcher.next()
# return val states for the curr epoch
avg_throughput = args.world_size * args.batch_size / batch_time.avg
return avg_throughput, batch_time.avg, losses.avg, top1.avg, top5.avg
def save_checkpoint(state, is_best, out_path):
if out_path:
filename = os.path.join(out_path, 'checkpoint.pth.tar')
bestfile = os.path.join(out_path, 'model_best.pth.tar')
else:
filename = 'checkpoint.pth.tar'
bestfile = 'model_best.pth.tar'
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, bestfile)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, step, len_epoch):
"""LR schedule that should yield 76% converged accuracy with batch size 256"""
factor = epoch // 30
if epoch >= 80:
factor = factor + 1
lr = args.lr*(0.1**factor)
"""Warmup"""
if epoch < 5:
lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= args.world_size
return rt
if __name__ == '__main__':
main()