forked from bitsandbytes-foundation/bitsandbytes
-
Notifications
You must be signed in to change notification settings - Fork 10
/
make_plot_with_jsonl.py
135 lines (102 loc) · 5.06 KB
/
make_plot_with_jsonl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import pandas as pd
cmap=plt.get_cmap('cool')
if __name__ == '__main__':
fig = plt.figure(tight_layout=True, figsize=(12,3.5))
gs = gridspec.GridSpec(1, 2)
dims_to_consider = [1024, 1280, 1408, 1664, 2048, 4096]
batch_size_for_plot1 = 32768
batch_sizes_for_plot2 = [2**14, 2**15, 2**16, 2**17]
dims_to_xtick = [1024, 2048, 4096]
logscale_plot1 = True
ax = fig.add_subplot(gs[0, 0])
# TODO: change this to what you want.
rdf = pd.read_json('speed_benchmark/info_a100_py2.jsonl', lines=True)
df = rdf[rdf.batch_size == batch_size_for_plot1]
# first plot the time occupied by different operations
for k, marker, ls, color, name in [
('standard_gx+standard_gw+standard_fwd', 's', '-', 'C2', 'Standard fp16 (sum of parts)'),
('x_quantize_rowwise+g_quantize_rowwise+w_quantize_global+w_quantize_global_transpose+standard_gw+global_fwd+global_bwd', 'o', '-', 'C4', 'SwitchBack int8 (sum of parts)'),
('standard_fwd', '^', '--', 'C2', 'Matmul XW (standard)'),
('standard_gw', '^', '-.', 'C2', 'Matmul GW (standard)'),
('standard_gx', '^', ':', 'gray', 'Matmul GX (both)'),
('global_fwd', '^', '--', 'C4', 'Int8 Matmul XW (switchback)'),
('global_bwd', '^', '-.', 'C4', 'Int8 Matmul GW (switchback)'),
('x_quantize_rowwise', 'P', '--', 'C4', 'Quantize rowwise X (switchback)'),
('g_quantize_rowwise', 'P', '-.', 'C4', 'Quantize rowwise G (switchback)'),
('w_quantize_global', '.', '--', 'C4', 'Quatnize global W (switchback)'),
('w_quantize_global_transpose', '.', '-.', 'C4', 'Quantize gloabl and\ntranspose W (switchback)'),
]:
xs = []
ys = []
for embed_dim in dims_to_consider:
# average over dim -> 4*dim and 4*dim -> dim
df_ = df[df.dim_in == embed_dim]
df_ = df_[df_.dim_out == embed_dim * 4]
xs.append(embed_dim)
y_ = 0
for k_ in k.split('+'):
y_ += df_[k_].values[0]
df_ = df[df.dim_in == embed_dim * 4]
df_ = df_[df_.dim_out == embed_dim]
for k_ in k.split('+'):
y_ += df_[k_].values[0]
ys.append(y_ * 0.5)
ax.plot(xs, ys, color=color, label=name, marker=marker, markersize=5 if marker=='s' else 5, linestyle=ls, linewidth=2 if '+' in k else 1.)
ax.set_xlabel('dim', fontsize=13)
ax.set_ylabel('time (ms)', fontsize=13)
ax.grid()
ax.set_xscale('log')
if logscale_plot1:
ax.set_yscale('log')
ax.tick_params(axis='x', labelsize=11)
ax.tick_params(axis='y', labelsize=11)
ax.set_xticks(dims_to_xtick)
ax.set_xticklabels(dims_to_xtick)
ax.set_xticks([], minor=True)
leg = ax.legend(loc='upper center', bbox_to_anchor=(-0.64, 1.), ncol=1, fontsize=10)
leg.get_texts()[0].set_fontweight('bold')
leg.get_texts()[1].set_fontweight('bold')
plt.subplots_adjust(left=0.1)
ax.set_title(' Linear layer, batch * sequence length = 32k', fontsize=10, loc='left', y=1.05, pad=-20)
ax = fig.add_subplot(gs[0, 1])
# now plot the % speedup for different batch sizes
for j, batch_size in enumerate(batch_sizes_for_plot2):
all_xs, all_ys = [], []
for k, marker, ls, color, name in [
('standard_gx+standard_gw+standard_fwd', 's', '-', 'C2', 'Standard fp16 (total time)'),
('x_quantize_rowwise+g_quantize_rowwise+w_quantize_global+w_quantize_global_transpose+standard_gw+global_fwd+global_bwd', 'o', '-', 'C4', 'SwitchBack int8 (total time)'),
]:
xs, ys = [], []
df = rdf[rdf.batch_size == batch_size]
for embed_dim in dims_to_consider:
df_ = df[df.dim_in == embed_dim]
df_ = df_[df_.dim_out == embed_dim * 4]
xs.append(embed_dim)
y_ = 0
for k_ in k.split('+'):
y_ += df_[k_].values[0]
df_ = df[df.dim_in == embed_dim * 4]
df_ = df_[df_.dim_out == embed_dim]
for k_ in k.split('+'):
y_ += df_[k_].values[0]
ys.append(y_ * 0.5)
all_xs.append(xs)
all_ys.append(ys)
color = cmap(j * 0.25)
real_ys = [-((all_ys[1][i] - all_ys[0][i]) / all_ys[0][i]) * 100 for i in range(len(all_ys[0]))]
markers = ['^', 'v', 'P', 'o']
ax.plot(all_xs[0], real_ys, color=color, label=f'batch * sequence length = {batch_size}', marker=markers[j], markersize=5 if marker=='s' else 5)
ax.legend()
ax.set_xlabel('dim', fontsize=13)
ax.set_xscale('log')
ax.grid()
ax.set_ylabel(r'% speedup', fontsize=13)
ax.tick_params(axis='x', labelsize=11)
ax.tick_params(axis='y', labelsize=11)
ax.set_xticks(dims_to_xtick)
ax.set_xticklabels(dims_to_xtick)
ax.set_xticks([], minor=True)
ax.set_title(' Linear layer summary, varying dimensions', fontsize=10, loc='left', y=1.05, pad=-20)
plt.savefig('speed_benchmark/plot_with_info.pdf', bbox_inches='tight')