forked from wengong-jin/hgraph2graph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
executable file
·117 lines (89 loc) · 3.96 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from multiprocessing import Pool
import math, random, sys
import pickle
import argparse
from functools import partial
import torch
import numpy
from hgraph import MolGraph, common_atom_vocab, PairVocab
import rdkit
def to_numpy(tensors):
convert = lambda x : x.numpy() if type(x) is torch.Tensor else x
a,b,c = tensors
b = [convert(x) for x in b[0]], [convert(x) for x in b[1]]
return a, b, c
def tensorize(mol_batch, vocab):
x = MolGraph.tensorize(mol_batch, vocab, common_atom_vocab)
return to_numpy(x)
def tensorize_pair(mol_batch, vocab):
x, y = zip(*mol_batch)
x = MolGraph.tensorize(x, vocab, common_atom_vocab)
y = MolGraph.tensorize(y, vocab, common_atom_vocab)
return to_numpy(x)[:-1] + to_numpy(y) #no need of order for x
def tensorize_cond(mol_batch, vocab):
x, y, cond = zip(*mol_batch)
cond = [map(int, c.split(',')) for c in cond]
cond = numpy.array(cond)
x = MolGraph.tensorize(x, vocab, common_atom_vocab)
y = MolGraph.tensorize(y, vocab, common_atom_vocab)
return to_numpy(x)[:-1] + to_numpy(y) + (cond,) #no need of order for x
if __name__ == "__main__":
lg = rdkit.RDLogger.logger()
lg.setLevel(rdkit.RDLogger.CRITICAL)
parser = argparse.ArgumentParser()
parser.add_argument('--train', required=True)
parser.add_argument('--vocab', required=True)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--mode', type=str, default='pair')
parser.add_argument('--ncpu', type=int, default=8)
args = parser.parse_args()
with open(args.vocab) as f:
vocab = [x.strip("\r\n ").split() for x in f]
args.vocab = PairVocab(vocab, cuda=False)
pool = Pool(args.ncpu)
random.seed(1)
if args.mode == 'pair':
#dataset contains molecule pairs
with open(args.train) as f:
data = [line.strip("\r\n ").split()[:2] for line in f]
random.shuffle(data)
batches = [data[i : i + args.batch_size] for i in range(0, len(data), args.batch_size)]
func = partial(tensorize_pair, vocab = args.vocab)
all_data = pool.map(func, batches)
num_splits = max(len(all_data) // 1000, 1)
le = (len(all_data) + num_splits - 1) // num_splits
for split_id in range(num_splits):
st = split_id * le
sub_data = all_data[st : st + le]
with open('tensors-%d.pkl' % split_id, 'wb') as f:
pickle.dump(sub_data, f, pickle.HIGHEST_PROTOCOL)
elif args.mode == 'cond_pair':
#dataset contains molecule pairs with conditions
with open(args.train) as f:
data = [line.strip("\r\n ").split()[:3] for line in f]
random.shuffle(data)
batches = [data[i : i + args.batch_size] for i in range(0, len(data), args.batch_size)]
func = partial(tensorize_cond, vocab = args.vocab)
all_data = pool.map(func, batches)
num_splits = max(len(all_data) // 1000, 1)
le = (len(all_data) + num_splits - 1) // num_splits
for split_id in range(num_splits):
st = split_id * le
sub_data = all_data[st : st + le]
with open('tensors-%d.pkl' % split_id, 'wb') as f:
pickle.dump(sub_data, f, pickle.HIGHEST_PROTOCOL)
elif args.mode == 'single':
#dataset contains single molecules
with open(args.train) as f:
data = [line.strip("\r\n ").split()[0] for line in f]
random.shuffle(data)
batches = [data[i : i + args.batch_size] for i in range(0, len(data), args.batch_size)]
func = partial(tensorize, vocab = args.vocab)
all_data = pool.map(func, batches)
num_splits = len(all_data) // 1000
le = (len(all_data) + num_splits - 1) // num_splits
for split_id in range(num_splits):
st = split_id * le
sub_data = all_data[st : st + le]
with open('tensors-%d.pkl' % split_id, 'wb') as f:
pickle.dump(sub_data, f, pickle.HIGHEST_PROTOCOL)