forked from linyqh/NarratoAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.example.toml
182 lines (145 loc) · 7.65 KB
/
config.example.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
[app]
project_version="0.2.0"
# 如果你没有 OPENAI API Key,可以使用 g4f 代替,或者使用国内的 Moonshot API
# If you don't have an OPENAI API Key, you can use g4f instead
video_llm_provider="gemini"
# 支持的提供商 (Supported providers):
# openai
# moonshot (月之暗面)
# oneapi
# g4f
# azure
# qwen (通义千问)
# gemini
llm_provider="openai"
# 支持多模态视频理解能力的大模型
########## Ollama Settings
# No need to set it unless you want to use your own proxy
ollama_base_url = ""
# Check your available models at https://ollama.com/library
ollama_model_name = ""
########## OpenAI API Key
# Get your API key at https://platform.openai.com/api-keys
openai_api_key = ""
# No need to set it unless you want to use your own proxy
openai_base_url = ""
# Check your available models at https://platform.openai.com/account/limits
openai_model_name = "gpt-4-turbo"
########## Moonshot API Key
# Visit https://platform.moonshot.cn/console/api-keys to get your API key.
moonshot_api_key=""
moonshot_base_url = "https://api.moonshot.cn/v1"
moonshot_model_name = "moonshot-v1-8k"
########## OneAPI API Key
# Visit https://github.com/songquanpeng/one-api to get your API key
oneapi_api_key=""
oneapi_base_url=""
oneapi_model_name=""
########## G4F
# Visit https://github.com/xtekky/gpt4free to get more details
# Supported model list: https://github.com/xtekky/gpt4free/blob/main/g4f/models.py
g4f_model_name = "gpt-3.5-turbo"
########## Azure API Key
# Visit https://learn.microsoft.com/zh-cn/azure/ai-services/openai/ to get more details
# API documentation: https://learn.microsoft.com/zh-cn/azure/ai-services/openai/reference
azure_api_key = ""
azure_base_url=""
azure_model_name="gpt-35-turbo" # replace with your model deployment name
azure_api_version = "2024-02-15-preview"
########## Gemini API Key
gemini_api_key=""
gemini_model_name = "gemini-1.5-flash"
########## Qwen API Key
# Visit https://dashscope.console.aliyun.com/apiKey to get your API key
# Visit below links to get more details
# https://tongyi.aliyun.com/qianwen/
# https://help.aliyun.com/zh/dashscope/developer-reference/model-introduction
qwen_api_key = ""
qwen_model_name = "qwen-max"
########## DeepSeek API Key
# Visit https://platform.deepseek.com/api_keys to get your API key
deepseek_api_key = ""
deepseek_base_url = "https://api.deepseek.com"
deepseek_model_name = "deepseek-chat"
# Subtitle Provider, "whisper"
# If empty, the subtitle will not be generated
subtitle_provider = "faster-whisper-large-v2"
subtitle_enabled = true
#
# ImageMagick
#
# Once you have installed it, ImageMagick will be automatically detected, except on Windows!
# On Windows, for example "C:\Program Files (x86)\ImageMagick-7.1.1-Q16-HDRI\magick.exe"
# Download from https://imagemagick.org/archive/binaries/ImageMagick-7.1.1-29-Q16-x64-static.exe
# imagemagick_path = "C:\\Program Files (x86)\\ImageMagick-7.1.1-Q16\\magick.exe"
#
# FFMPEG
#
# 通常情况下,ffmpeg 会被自动下载,并且会被自动检测到。
# 但是如果你的环境有问题,无法自动下载,可能会遇到如下错误:
# RuntimeError: No ffmpeg exe could be found.
# Install ffmpeg on your system, or set the IMAGEIO_FFMPEG_EXE environment variable.
# 此时你可以手动下载 ffmpeg 并设置 ffmpeg_path,下载地址:https://www.gyan.dev/ffmpeg/builds/
# Under normal circumstances, ffmpeg is downloaded automatically and detected automatically.
# However, if there is an issue with your environment that prevents automatic downloading, you might encounter the following error:
# RuntimeError: No ffmpeg exe could be found.
# Install ffmpeg on your system, or set the IMAGEIO_FFMPEG_EXE environment variable.
# In such cases, you can manually download ffmpeg and set the ffmpeg_path, download link: https://www.gyan.dev/ffmpeg/builds/
# ffmpeg_path = "C:\\Users\\harry\\Downloads\\ffmpeg.exe"
#########################################################################################
# 当视频生成成功后,API服务提供的视频下载接入点,默认为当前服务的地址和监听端口
# 比如 http://127.0.0.1:8080/tasks/6357f542-a4e1-46a1-b4c9-bf3bd0df5285/final-1.mp4
# 如果你需要使用域名对外提供服务(一般会用nginx做代理),则可以设置为你的域名
# 比如 https://xxxx.com/tasks/6357f542-a4e1-46a1-b4c9-bf3bd0df5285/final-1.mp4
# endpoint="https://xxxx.com"
# When the video is successfully generated, the API service provides a download endpoint for the video, defaulting to the service's current address and listening port.
# For example, http://127.0.0.1:8080/tasks/6357f542-a4e1-46a1-b4c9-bf3bd0df5285/final-1.mp4
# If you need to provide the service externally using a domain name (usually done with nginx as a proxy), you can set it to your domain name.
# For example, https://xxxx.com/tasks/6357f542-a4e1-46a1-b4c9-bf3bd0df5285/final-1.mp4
# endpoint="https://xxxx.com"
endpoint=""
# Video material storage location
# material_directory = "" # Indicates that video materials will be downloaded to the default folder, the default folder is ./storage/cache_videos under the current project
# material_directory = "/user/harry/videos" # Indicates that video materials will be downloaded to a specified folder
# material_directory = "task" # Indicates that video materials will be downloaded to the current task's folder, this method does not allow sharing of already downloaded video materials
# 视频素材存放位置
# material_directory = "" #表示将视频素材下载到默认的文件夹,默认文件夹为当前项目下的 ./storage/cache_videos
# material_directory = "/user/harry/videos" #表示将视频素材下载到指定的文件夹中
# material_directory = "task" #表示将视频素材下载到当前任务的文件夹中,这种方式无法共享已经下载的视频素材
material_directory = ""
# Used for state management of the task
enable_redis = false
redis_host = "localhost"
redis_port = 6379
redis_db = 0
redis_password = ""
# 文生视频时的最大并发任务数
max_concurrent_tasks = 5
# webui界面是否显示配置项
# webui hide baisc config panel
hide_config = false
[whisper]
# Only effective when subtitle_provider is "whisper"
# Run on GPU with FP16
# model = WhisperModel(model_size, device="cuda", compute_type="float16")
# Run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# Run on CPU with INT8
# model = WhisperModel(model_size, device="cpu", compute_type="int8")
# recommended model_size: "large-v3"
model_size="faster-whisper-large-v2"
# if you want to use GPU, set device="cuda"
device="CPU"
compute_type="int8"
[proxy]
### Use a proxy to access the Pexels API
### Format: "http://<username>:<password>@<proxy>:<port>"
### Example: "http://user:pass@proxy:1234"
### Doc: https://requests.readthedocs.io/en/latest/user/advanced/#proxies
http = "http://127.0.0.1:7890"
https = "http://127.0.0.1:7890"
[azure]
# Azure Speech API Key
# Get your API key at https://portal.azure.com/#view/Microsoft_Azure_ProjectOxford/CognitiveServicesHub/~/SpeechServices
speech_key=""
speech_region=""