forked from batra-mlp-lab/visdial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.lua
480 lines (411 loc) · 18.7 KB
/
dataloader.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
require 'hdf5'
require 'xlua'
local utils = require 'utils'
local dataloader = {};
-- read the data
-- params: object itself, command line options,
-- subset of data to load (train, val, test)
function dataloader:initialize(opt, subsets)
-- read additional info like dictionary, etc
print('DataLoader loading json file: ', opt.inputJson)
info = utils.readJSON(opt.inputJson);
for key, value in pairs(info) do dataloader[key] = value; end
-- add <START> and <END> to vocabulary
count = 0;
for _ in pairs(dataloader['word2ind']) do count = count + 1; end
dataloader['word2ind']['<START>'] = count + 1;
dataloader['word2ind']['<END>'] = count + 2;
count = count + 2;
dataloader.vocabSize = count;
print(string.format('Vocabulary size (with <START>,<END>): %d\n', count));
-- construct ind2word
local ind2word = {};
for word, ind in pairs(dataloader['word2ind']) do
ind2word[ind] = word;
end
dataloader['ind2word'] = ind2word;
-- read questions, answers and options
print('DataLoader loading h5 file: ', opt.inputQues)
local quesFile = hdf5.open(opt.inputQues, 'r');
print('DataLoader loading h5 file: ', opt.inputImg)
local imgFile = hdf5.open(opt.inputImg, 'r');
-- number of threads
self.numThreads = {};
for _, dtype in pairs(subsets) do
-- convert image ids to numbers
for k, v in pairs(dataloader['unique_img_'..dtype]) do
dataloader['unique_img_'..dtype][k] = tonumber(string.match(v, '000%d+'))
end
-- read question related information
self[dtype..'_ques'] = quesFile:read('ques_'..dtype):all();
self[dtype..'_ques_len'] = quesFile:read('ques_length_'..dtype):all();
-- read answer related information
self[dtype..'_ans'] = quesFile:read('ans_'..dtype):all();
self[dtype..'_ans_len'] = quesFile:read('ans_length_'..dtype):all();
if dtype ~= 'test' then
self[dtype..'_ans_ind'] = quesFile:read('ans_index_'..dtype):all():long();
end
-- read image list, if image features are needed
if opt.useIm then
print('Reading image features..')
local imgFeats = imgFile:read('/images_'..dtype):all();
-- Normalize the image features (if needed)
if opt.imgNorm == 1 then
print('Normalizing image features..')
local nm = torch.sqrt(torch.sum(torch.cmul(imgFeats, imgFeats), 2));
imgFeats = torch.cdiv(imgFeats, nm:expandAs(imgFeats)):float();
end
-- Transpose from N x 512 x 14 x 14 to N x 14 x 14 x 512
if string.match(opt.encoder, 'att') then
imgFeats = imgFeats:permute(1, 3, 4, 2);
end
self[dtype..'_img_fv'] = imgFeats;
-- TODO: make it 1 indexed in processing code
-- currently zero indexed, adjust manually
self[dtype..'_img_pos'] = quesFile:read('img_pos_'..dtype):all():long();
self[dtype..'_img_pos'] = self[dtype..'_img_pos'] + 1;
end
-- print information for data type
print(string.format('%s:\n\tNo. of threads: %d\n\tNo. of rounds: %d'..
'\n\tMax ques len: %d'..'\n\tMax ans len: %d\n',
dtype, self[dtype..'_ques']:size(1),
self[dtype..'_ques']:size(2),
self[dtype..'_ques']:size(3),
self[dtype..'_ans']:size(3)));
-- record some stats
if dtype == 'train' then
self.numTrainThreads = self['train_ques']:size(1);
self.numThreads['train'] = self.numTrainThreads;
end
if dtype == 'test' then
self.numTestThreads = self['test_ques']:size(1);
self.numThreads['test'] = self.numTestThreads;
end
if dtype == 'val' then
self.numValThreads = self['val_ques']:size(1);
self.numThreads['val'] = self.numValThreads;
end
-- record the options
if dtype == 'train' or dtype == 'val' or dtype == 'test' then
self[dtype..'_opt'] = quesFile:read('opt_'..dtype):all():long();
self[dtype..'_opt_len'] = quesFile:read('opt_length_'..dtype):all();
self[dtype..'_opt_list'] = quesFile:read('opt_list_'..dtype):all();
self.numOptions = self[dtype..'_opt']:size(3);
end
self[dtype..'_num_rounds'] = quesFile:read('num_rounds_'..dtype):all();
-- assume similar stats across multiple data subsets
-- maximum number of questions per image, ideally 10
self.maxQuesCount = self[dtype..'_ques']:size(2);
-- maximum length of question
self.maxQuesLen = self[dtype..'_ques']:size(3);
-- maximum length of answer
self.maxAnsLen = self[dtype..'_ans']:size(3);
-- if history is needed
if opt.useHistory then
self[dtype..'_cap'] = quesFile:read('cap_'..dtype):all():long();
self[dtype..'_cap_len'] = quesFile:read('cap_length_'..dtype):all();
end
end
-- done reading, close files
quesFile:close();
imgFile:close();
-- take desired flags/values from opt
self.useHistory = opt.useHistory;
self.concatHistory = opt.concatHistory;
self.useIm = opt.useIm;
self.maxHistoryLen = opt.maxHistoryLen or 60;
-- prepareDataset for training
for _, dtype in pairs(subsets) do self:prepareDataset(dtype); end
end
-- method to prepare questions and answers for retrieval
-- questions : right align
-- answers : prefix with <START> and <END>
function dataloader:prepareDataset(dtype)
-- right align the questions
print('Right aligning questions: '..dtype);
self[dtype..'_ques_fwd'] = utils.rightAlign(self[dtype..'_ques'],
self[dtype..'_ques_len']);
-- if separate captions are needed
if self.useHistory then self:processHistory(dtype); end
-- prefix options with <START> and <END>, if not train
-- if dtype ~= 'train' then self:processOptions(dtype); end
self:processOptions(dtype)
-- process answers
self:processAnswers(dtype);
end
-- process answers
function dataloader:processAnswers(dtype)
--prefix answers with <START>, <END>; adjust answer lengths
local answers = self[dtype..'_ans'];
local ansLen = self[dtype..'_ans_len'];
local numConvs = answers:size(1);
local numRounds = answers:size(2);
local maxAnsLen = answers:size(3);
local decodeIn = torch.LongTensor(numConvs, numRounds, maxAnsLen+1):zero();
local decodeOut = torch.LongTensor(numConvs, numRounds, maxAnsLen+1):zero();
-- decodeIn begins with <START>
decodeIn[{{}, {}, 1}] = self.word2ind['<START>'];
-- go over each answer and modify
local endTokenId = self.word2ind['<END>'];
for thId = 1, numConvs do
for roundId = 1, numRounds do
local length = ansLen[thId][roundId];
-- only if nonzero
if length > 0 then
decodeIn[thId][roundId][{{2, length + 1}}]
= answers[thId][roundId][{{1, length}}];
decodeOut[thId][roundId][{{1, length}}]
= answers[thId][roundId][{{1, length}}];
else
if dtype ~= 'test' then
print(string.format('Warning: empty answer at (%d %d %d)',
thId, roundId, length))
end
end
decodeOut[thId][roundId][length+1] = endTokenId;
end
end
self[dtype..'_ans_len'] = self[dtype..'_ans_len'] + 1;
self[dtype..'_ans_in'] = decodeIn;
self[dtype..'_ans_out'] = decodeOut;
end
-- process caption as history
function dataloader:processHistory(dtype)
local captions = self[dtype..'_cap'];
local questions = self[dtype..'_ques'];
local quesLen = self[dtype..'_ques_len'];
local capLen = self[dtype..'_cap_len'];
local maxQuesLen = questions:size(3);
local answers = self[dtype..'_ans'];
local ansLen = self[dtype..'_ans_len'];
local numConvs = answers:size(1);
local numRounds = answers:size(2);
local maxAnsLen = answers:size(3);
local history, histLen;
if self.concatHistory == true then
self.maxHistoryLen = math.min(numRounds * (maxQuesLen + maxAnsLen), 300);
history = torch.LongTensor(numConvs, numRounds,
self.maxHistoryLen):zero();
histLen = torch.LongTensor(numConvs, numRounds):zero();
else
history = torch.LongTensor(numConvs, numRounds,
maxQuesLen+maxAnsLen):zero();
histLen = torch.LongTensor(numConvs, numRounds):zero();
end
-- go over each question and append it with answer
for thId = 1, numConvs do
local lenC = capLen[thId];
local lenH; -- length of history
for roundId = 1, numRounds do
if roundId == 1 then
-- first round has caption as history
history[thId][roundId][{{1, maxQuesLen + maxAnsLen}}]
= captions[thId][{{1, maxQuesLen + maxAnsLen}}];
lenH = math.min(lenC, maxQuesLen + maxAnsLen);
else
local lenQ = quesLen[thId][roundId-1];
local lenA = ansLen[thId][roundId-1];
-- if concatHistory, string together all previous QAs
if self.concatHistory == true then
history[thId][roundId][{{1, lenH}}]
= history[thId][roundId-1][{{1, lenH}}];
history[thId][roundId][{{lenH+1}}] = self.word2ind['<END>'];
if lenQ > 0 then
history[thId][roundId][{{lenH+2, lenH+1+lenQ}}]
= questions[thId][roundId-1][{{1, lenQ}}];
end
if lenA > 0 then
history[thId][roundId][{{lenH+1+lenQ+1, lenH+1+lenQ+lenA}}]
= answers[thId][roundId-1][{{1, lenA}}];
end
lenH = lenH + lenQ + lenA + 1
-- else, history is just previous round QA
else
if lenQ > 0 then
history[thId][roundId][{{1, lenQ}}]
= questions[thId][roundId-1][{{1, lenQ}}];
end
if lenA > 0 then
history[thId][roundId][{{lenQ + 1, lenQ + lenA}}]
= answers[thId][roundId-1][{{1, lenA}}];
end
lenH = lenA + lenQ;
end
end
-- save the history length
histLen[thId][roundId] = lenH;
end
end
-- right align history and then save
print('Right aligning history: '..dtype);
self[dtype..'_hist'] = utils.rightAlign(history, histLen);
self[dtype..'_hist_len'] = histLen;
end
-- process options
function dataloader:processOptions(dtype)
local lengths = self[dtype..'_opt_len'];
local answers = self[dtype..'_ans'];
local maxAnsLen = answers:size(3);
local answers = self[dtype..'_opt_list'];
local numConvs = answers:size(1);
local ansListLen = answers:size(1);
local decodeIn = torch.LongTensor(ansListLen, maxAnsLen + 1):zero();
local decodeOut = torch.LongTensor(ansListLen, maxAnsLen + 1):zero();
-- decodeIn begins with <START>
decodeIn[{{}, 1}] = self.word2ind['<START>'];
-- go over each answer and modify
local endTokenId = self.word2ind['<END>'];
for id = 1, ansListLen do
-- print progress for number of images
if id % 100 == 0 then
xlua.progress(id, numConvs);
end
local length = lengths[id];
-- only if nonzero
if length > 0 then
decodeIn[id][{{2, length + 1}}] = answers[id][{{1, length}}];
decodeOut[id][{{1, length}}] = answers[id][{{1, length}}];
decodeOut[id][length + 1] = endTokenId;
else
print(string.format('Warning: empty answer for %s at %d',
dtype, id))
end
end
self[dtype..'_opt_len'] = self[dtype..'_opt_len'] + 1;
self[dtype..'_opt_in'] = decodeIn;
self[dtype..'_opt_out'] = decodeOut;
collectgarbage();
end
-- method to grab the next training batch
function dataloader.getTrainBatch(self, params, batchSize)
local size = batchSize or params.batchSize;
local inds = torch.LongTensor(size):random(1, params.numTrainThreads);
-- Index question, answers, image features for batch
local batchOutput = self:getIndexData(inds, params, 'train')
if params.decoder == 'disc' then
local optionOutput = self:getIndexOption(inds, params, 'train')
batchOutput['options'] = optionOutput:view(optionOutput:size(1)
* optionOutput:size(2), optionOutput:size(3), -1)
batchOutput['answer_ind'] = batchOutput['answer_ind']:view(batchOutput['answer_ind']
:size(1) * batchOutput['answer_ind']:size(2))
end
return batchOutput
end
-- method to grab the next test/val batch, for evaluation of a given size
function dataloader.getTestBatch(self, startId, params, dtype)
local batchSize = params.batchSize
-- get the next start id and fill up current indices till then
local nextStartId;
if dtype == 'val' then
nextStartId = math.min(self.numValThreads+1, startId + batchSize);
end
if dtype == 'test' then
nextStartId = math.min(self.numTestThreads+1, startId + batchSize);
end
-- dumb way to get range (complains if cudatensor is default)
local inds = torch.LongTensor(nextStartId - startId);
for ii = startId, nextStartId - 1 do inds[ii - startId + 1] = ii; end
-- Index question, answers, image features for batch
local batchOutput = self:getIndexData(inds, params, dtype);
local optionOutput = self:getIndexOption(inds, params, dtype);
if params.decoder == 'disc' then
batchOutput['options'] = optionOutput:view(optionOutput:size(1)
* optionOutput:size(2), optionOutput:size(3), -1)
if dtype ~= 'test' then
batchOutput['answer_ind'] = batchOutput['answer_ind']:view(batchOutput['answer_ind']
:size(1) * batchOutput['answer_ind']:size(2))
end
elseif params.decoder == 'gen' then
-- merge both the tables and return
for key, value in pairs(optionOutput) do batchOutput[key] = value; end
end
batchOutput['num_rounds'] = self[dtype..'_num_rounds']:index(1, inds):long()
return batchOutput, nextStartId;
end
-- get batch from data subset given the indices
function dataloader.getIndexData(self, inds, params, dtype)
-- get the question lengths
local batchQuesLen = self[dtype..'_ques_len']:index(1, inds);
local maxQuesLen = torch.max(batchQuesLen);
-- get questions
local quesFwd = self[dtype..'_ques_fwd']:index(1, inds)
[{{}, {}, {-maxQuesLen, -1}}];
local history;
if self.useHistory then
local batchHistLen = self[dtype..'_hist_len']:index(1, inds);
local maxHistLen = math.min(torch.max(batchHistLen), self.maxHistoryLen);
history = self[dtype..'_hist']:index(1, inds)
[{{}, {}, {-maxHistLen, -1}}];
end
local imgFeats;
if self.useIm then
local imgInds = self[dtype..'_img_pos']:index(1, inds);
imgFeats = self[dtype..'_img_fv']:index(1, imgInds);
end
-- get the answer lengths
local batchAnsLen = self[dtype..'_ans_len']:index(1, inds);
local maxAnsLen = torch.max(batchAnsLen);
-- answer labels (decode input and output)
local answerIn = self[dtype..'_ans_in']
:index(1, inds)[{{}, {}, {1, maxAnsLen}}];
local answerOut = self[dtype..'_ans_out']
:index(1, inds)[{{}, {}, {1, maxAnsLen}}];
local output = {};
if params.gpuid >= 0 then
output['ques_fwd'] = quesFwd:cuda();
output['answer_in'] = answerIn:cuda();
output['answer_out'] = answerOut:cuda();
if history then output['hist'] = history:cuda(); end
if caption then output['cap'] = caption:cuda(); end
if imgFeats then output['img_feat'] = imgFeats:cuda(); end
else
output['ques_fwd'] = quesFwd:contiguous();
output['answer_in'] = answerIn:contiguous();
output['answer_out'] = answerOut:contiguous();
if history then output['hist'] = history:contiguous(); end
if caption then output['cap'] = caption:contiguous(); end
if imgFeats then output['img_feat'] = imgFeats:contiguous(); end
end
if dtype ~= 'test' then
local answerInd = self[dtype..'_ans_ind']:index(1, inds);
output['answer_ind'] = params.gpuid >= 0 and answerInd:cuda() or answerInd:contiguous();
end
return output;
end
-- get batch from options given the indices
function dataloader.getIndexOption(self, inds, params, dtype)
local output = {};
if params.decoder == 'gen' then
local optionIn, optionOut
local optInds = self[dtype..'_opt']:index(1, inds);
local indVector = optInds:view(-1);
local batchOptLen = self[dtype..'_opt_len']:index(1, indVector);
local maxOptLen = torch.max(batchOptLen);
optionIn = self[dtype..'_opt_in']:index(1, indVector);
optionIn = optionIn:view(optInds:size(1), optInds:size(2),
optInds:size(3), -1);
optionIn = optionIn[{{}, {}, {}, {1, maxOptLen}}];
optionOut = self[dtype..'_opt_out']:index(1, indVector);
optionOut = optionOut:view(optInds:size(1), optInds:size(2),
optInds:size(3), -1);
optionOut = optionOut[{{}, {}, {}, {1, maxOptLen}}];
if params.gpuid >= 0 then
output['option_in'] = optionIn:cuda();
output['option_out'] = optionOut:cuda();
else
output['option_in'] = optionIn:contiguous();
output['option_out'] = optionOut:contiguous();
end
elseif params.decoder == 'disc' then
local optInds = self[dtype .. '_opt']:index(1, inds)
local indVector = optInds:view(-1)
local optionIn = self[dtype .. '_opt_list']:index(1, indVector)
optionIn = optionIn:view(optInds:size(1), optInds:size(2), optInds:size(3), -1)
output = optionIn
if params.gpuid >= 0 then
output = output:cuda()
end
end
return output;
end
return dataloader;